Gotowa bibliografia na temat „Variance model”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Variance model”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Variance model"
Kubáček, Lubomír. "Linear model with inaccurate variance components". Applications of Mathematics 41, nr 6 (1996): 433–45. http://dx.doi.org/10.21136/am.1996.134336.
Pełny tekst źródłaVolaufová, Júlia. "On variance of the two-stage estimator in variance-covariance components model". Applications of Mathematics 38, nr 1 (1993): 1–9. http://dx.doi.org/10.21136/am.1993.104529.
Pełny tekst źródłaPardavi-Horvath, M., E. Della Torre i F. Vajda. "A variable variance Preisach model (garnet film)". IEEE Transactions on Magnetics 29, nr 6 (listopad 1993): 3793–95. http://dx.doi.org/10.1109/20.281302.
Pełny tekst źródłaZainodin, H. J., G. Khuneswari, A. Noraini i F. A. A. Haider. "Selected Model Systematic Sequence via Variance Inflationary Factor". International Journal of Applied Physics and Mathematics 5, nr 2 (2015): 105–14. http://dx.doi.org/10.17706/ijapm.2015.5.2.105-114.
Pełny tekst źródłaBishop, Craig H., i Elizabeth A. Satterfield. "Hidden Error Variance Theory. Part I: Exposition and Analytic Model". Monthly Weather Review 141, nr 5 (1.05.2013): 1454–68. http://dx.doi.org/10.1175/mwr-d-12-00118.1.
Pełny tekst źródłaBorcia, I. D., L. Spinu i A. Stancu. "A Preisach-Neel model with thermally variable variance". IEEE Transactions on Magnetics 38, nr 5 (wrzesień 2002): 2415–17. http://dx.doi.org/10.1109/tmag.2002.803611.
Pełny tekst źródłaHjalmarsson, H. "A Model Variance Estimator". IFAC Proceedings Volumes 26, nr 2 (lipiec 1993): 335–40. http://dx.doi.org/10.1016/s1474-6670(17)49139-7.
Pełny tekst źródłaKoul, Hira L., i Weixing Song. "Conditional variance model checking". Journal of Statistical Planning and Inference 140, nr 4 (kwiecień 2010): 1056–72. http://dx.doi.org/10.1016/j.jspi.2009.10.008.
Pełny tekst źródłaStuchlý, Jaroslav. "Bayes unbiased estimation in a model with two variance components". Applications of Mathematics 32, nr 2 (1987): 120–30. http://dx.doi.org/10.21136/am.1987.104241.
Pełny tekst źródłaStuchlý, Jaroslav. "Bayes unbiased estimation in a model with three variance components". Applications of Mathematics 34, nr 5 (1989): 375–86. http://dx.doi.org/10.21136/am.1989.104365.
Pełny tekst źródłaRozprawy doktorskie na temat "Variance model"
Xiao, Yan. "Evaluating Variance of the Model Credibility Index". Digital Archive @ GSU, 2007. http://digitalarchive.gsu.edu/math_theses/39.
Pełny tekst źródłaProsser, Robert James. "Robustness of multivariate mixed model ANOVA". Thesis, University of British Columbia, 1985. http://hdl.handle.net/2429/25511.
Pełny tekst źródłaEducation, Faculty of
Educational and Counselling Psychology, and Special Education (ECPS), Department of
Graduate
Moravec, Radek. "Oceňování opcí a variance gama proces". Master's thesis, Vysoká škola ekonomická v Praze, 2010. http://www.nusl.cz/ntk/nusl-18707.
Pełny tekst źródłaAbdumuminov, Shuhrat, i David Emanuel Esteky. "Black-Litterman Model: Practical Asset Allocation Model Beyond Traditional Mean-Variance". Thesis, Mälardalens högskola, Akademin för utbildning, kultur och kommunikation, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-32427.
Pełny tekst źródłaTjärnström, Fredrik. "Variance expressions and model reduction in system identification /". Linköping : Univ, 2002. http://www.bibl.liu.se/liupubl/disp/disp2002/tek730s.pdf.
Pełny tekst źródłaFinlay, Richard. "The Variance Gamma (VG) Model with Long Range Dependence". University of Sydney, 2009. http://hdl.handle.net/2123/5434.
Pełny tekst źródłaThis thesis mainly builds on the Variance Gamma (VG) model for financial assets over time of Madan & Seneta (1990) and Madan, Carr & Chang (1998), although the model based on the t distribution championed in Heyde & Leonenko (2005) is also given attention. The primary contribution of the thesis is the development of VG models, and the extension of t models, which accommodate a dependence structure in asset price returns. In particular it has become increasingly clear that while returns (log price increments) of historical financial asset time series appear as a reasonable approximation of independent and identically distributed data, squared and absolute returns do not. In fact squared and absolute returns show evidence of being long range dependent through time, with autocorrelation functions that are still significant after 50 to 100 lags. Given this evidence against the assumption of independent returns, it is important that models for financial assets be able to accommodate a dependence structure.
Robinson, Timothy J. "Dual Model Robust Regression". Diss., Virginia Tech, 1997. http://hdl.handle.net/10919/11244.
Pełny tekst źródłaPh. D.
Roh, Kyoungmin. "Evolutionary variance of gene network model via simulated annealing". [Ames, Iowa : Iowa State University], 2008.
Znajdź pełny tekst źródłaLetsoalo, Marothi Peter. "Assessing variance components of multilevel models pregnancy data". Thesis, University of Limpopo, 2019. http://hdl.handle.net/10386/2873.
Pełny tekst źródłaMost social and health science data are longitudinal and additionally multilevel in nature, which means that response data are grouped by attributes of some cluster. Ignoring the differences and similarities generated by these clusters results to misleading estimates, hence motivating for a need to assess variance components (VCs) using multilevel models (MLMs) or generalised linear mixed models (GLMMs). This study has explored and fitted teenage pregnancy census data that were gathered from 2011 to 2015 by the Africa Centre at Kwa-Zulu Natal, South Africa. The exploration of these data revealed a two level pure hierarchy data structure of teenage pregnancy status for some years nested within female teenagers. To fit these data, the effects that census year (year) and three female characteristics (namely age (age), number of household membership (idhhms), number of children before observation year (nch) have on teenage pregnancy were examined. Model building of this work, firstly, fitted a logit gen eralised linear model (GLM) under the assumption that teenage pregnancy measurements are independent between females and secondly, fitted a GLMM or MLM of female random effect. A better fit GLMM indicated, for an additional year on year, a 0.203 decrease on the log odds of teenage pregnancy while GLM suggested a 0.21 decrease and 0.557 increase for each additional year on age and year, respectively. A GLM with only year effect uncovered a fixed estimate which is higher, by 0.04, than that of a better fit GLMM. The inconsistency in the effect of year was caused by a significant female cluster variance of approximately 0.35 that was used to compute the VCs. Given the effect of year, the VCs suggested that 9.5% of the differences in teenage pregnancy lies between females while 0.095 similarities (scale from 0 to 1) are for the same female. It was also revealed that year does not vary within females. Apart from the small differences between observed estimates of the fitted GLM and GLMM, this work produced evidence that accounting for cluster effect improves accuracy of estimates. Keywords: Multilevel Model, Generalised Linear Mixed Model, Variance Components, Hier archical Data Structure, Social Science Data, Teenage Pregnancy
Brien, Christopher J. "Factorial linear model analysis". Title page, table of contents and summary only, 1992. http://thesis.library.adelaide.edu.au/public/adt-SUA20010530.175833.
Pełny tekst źródłaKsiążki na temat "Variance model"
Faraway, Julian J. Extending Linear Model With R. London: Chapman & Hall/CRC, 2004.
Znajdź pełny tekst źródłaSchlicht, Ekkehart. Variance estimation in a random coefficients model. Bonn, Germany: IZA, 2006.
Znajdź pełny tekst źródłaChang-Jin, Kim. In search of a model that an ARCH-type model may be approximating: The Markov model of heteroskedasticity. [Toronto, Ont: York University, Dept. of Economics, 1990.
Znajdź pełny tekst źródłaHastie, Trevor. Exploring the nature of covariate effects in the proportional hazards model. Toronto: University of Toronto, Dept. of statistics, 1988.
Znajdź pełny tekst źródłaBoylan, John E. The compound Poisson demand model and the quadratic variance law. Coventry: University of Warwick. Warwick Business School Research Bureau, 1994.
Znajdź pełny tekst źródłaExtending the linear model with R: Generalized linear, mixed effects and nonparametric regression models. Boca Raton: Taylor & Francis, 2016.
Znajdź pełny tekst źródłaMcEntegart, Karen. A comparison of mean-variance and mean-semivariance capital asset models : evidence from the Irish stock market. Dublin: University College Dublin, 1994.
Znajdź pełny tekst źródłaPark, Hun Y. A comparison of a random variance model and the Black-Scholes model of pricing long-term European options. [Urbana, Ill.]: College of Commerce and Business Administration, University of Illinois at Urbana-Champaign, 1991.
Znajdź pełny tekst źródłaData analysis and approximate models: Model choice, location-scale, analysis of variance, nonparametic regression and image analysis. Boca Raton: CRC Press, 2014.
Znajdź pełny tekst źródłaJohansen, Søren. The asymptotic variance of the estimated roots in a cointegrated vector autoregressive model. Florence: European University Institute, Department of Economics, 2001.
Znajdź pełny tekst źródłaCzęści książek na temat "Variance model"
Särndal, Carl-Erik, Bengt Swensson i Jan Wretman. "Variance Estimation". W Model Assisted Survey Sampling, 418–46. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4612-4378-6_11.
Pełny tekst źródłaHangay, George, Susan V. Gruner, F. W. Howard, John L. Capinera, Eugene J. Gerberg, Susan E. Halbert, John B. Heppner i in. "Mean-Variance Model". W Encyclopedia of Entomology, 2313. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6359-6_1761.
Pełny tekst źródłaZimmerman, Dale L. "Inference for Variance–Covariance Parameters". W Linear Model Theory, 451–86. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-52063-2_16.
Pełny tekst źródłaZimmerman, Dale L. "Inference for Variance–Covariance Parameters". W Linear Model Theory, 325–50. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-52074-8_16.
Pełny tekst źródłaChung, Kai Lai, i Farid AitSahlia. "Mean-Variance Pricing Model". W Undergraduate Texts in Mathematics, 329–58. New York, NY: Springer New York, 2003. http://dx.doi.org/10.1007/978-0-387-21548-8_9.
Pełny tekst źródłaJalili-Kharaajoo, Mahdi, i Farhad Besharati. "Fuzzy Variance Analysis Model". W Computer and Information Sciences - ISCIS 2003, 537–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-39737-3_67.
Pełny tekst źródłaQin, Zhongfeng. "Credibilistic Mean-Variance-Skewness Model". W Uncertainty and Operations Research, 29–52. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1810-7_2.
Pełny tekst źródłaQin, Zhongfeng. "Uncertain Random Mean-Variance Model". W Uncertainty and Operations Research, 131–49. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1810-7_8.
Pełny tekst źródłaBoard, John L. G., Charles M. S. Sutcliffe i William T. Ziemba. "Portfolio Theory: Mean-Variance Model". W Encyclopedia of Operations Research and Management Science, 1142–48. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-1-4419-1153-7_775.
Pełny tekst źródłaMalley, James D. "Linearization of the Basic Model". W Optimal Unbiased Estimation of Variance Components, 15–28. New York, NY: Springer New York, 1986. http://dx.doi.org/10.1007/978-1-4615-7554-2_3.
Pełny tekst źródłaStreszczenia konferencji na temat "Variance model"
Pardavi-horvath, M., E. Della Terre, F. Vajda i G. Verrtesy. "A Variable-variance Preisach Model". W 1993 Digests of International Magnetics Conference. IEEE, 1993. http://dx.doi.org/10.1109/intmag.1993.642266.
Pełny tekst źródłaBrinckman, Kevin, William Calhoon, Stephen Mattick, Jeremy Tomes i Sanford Dash. "Scalar Variance Model Validation for High-Speed Variable Composition Flows". W 44th AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-715.
Pełny tekst źródłaJiang, Wendy Xi, Barry L. Nelson i L. Jeff Hong. "Estimating Sensitivity to Input Model Variance". W 2019 Winter Simulation Conference (WSC). IEEE, 2019. http://dx.doi.org/10.1109/wsc40007.2019.9004684.
Pełny tekst źródłaWan, Shuping. "Mean-variance Portfolio Model with Consumption". W 2006 9th International Conference on Control, Automation, Robotics and Vision. IEEE, 2006. http://dx.doi.org/10.1109/icarcv.2006.345085.
Pełny tekst źródłaHoe, Lam Weng, i Lam Weng Siew. "Portfolio optimization with mean-variance model". W INNOVATIONS THROUGH MATHEMATICAL AND STATISTICAL RESEARCH: Proceedings of the 2nd International Conference on Mathematical Sciences and Statistics (ICMSS2016). Author(s), 2016. http://dx.doi.org/10.1063/1.4952526.
Pełny tekst źródłaChen, Guohua, i Xiaolian Liao. "Credibility Mean-Variance-skewness Portfolio Selection Model". W 2010 2nd International Workshop on Database Technology and Applications (DBTA). IEEE, 2010. http://dx.doi.org/10.1109/dbta.2010.5659059.
Pełny tekst źródłaPan, Qiming, i Xiaoxia Huang. "Mean-Variance Model for International Portfolio Selection". W 2008 IEEE/IFIP International Conference on Embedded and Ubiquitous Computing (EUC). IEEE, 2008. http://dx.doi.org/10.1109/euc.2008.16.
Pełny tekst źródłaMahdi Jalili Kharaajoo, Mahdi Jalili Kharaajoo, i Hassan Ebrahimirad Hassan Ebrahimirad. "A note on fuzzy variance analysis model". W 2003 International Symposium on Signals, Circuits and Systems. IEEE, 2003. http://dx.doi.org/10.1109/scs.2003.1226960.
Pełny tekst źródłaBahnas, Mohamed, i Mohamed Al-Imam. "OPC model calibration considerations for data variance". W SPIE Advanced Lithography. SPIE, 2008. http://dx.doi.org/10.1117/12.776896.
Pełny tekst źródłaBoone-Sifuentes, Tanya, Antonio Robles-Kelly i Asef Nazari. "Max-Variance Convolutional Neural Network Model Compression". W 2020 Digital Image Computing: Techniques and Applications (DICTA). IEEE, 2020. http://dx.doi.org/10.1109/dicta51227.2020.9363347.
Pełny tekst źródłaRaporty organizacyjne na temat "Variance model"
West, Kenneth. A Variance Bounds Test of the Linear Quardractic Inventory Model. Cambridge, MA: National Bureau of Economic Research, marzec 1985. http://dx.doi.org/10.3386/w1581.
Pełny tekst źródłaGelfand, Alan E., i Dipak K. Dey. Improved Estimation of the Disturbance Variance in a Linear Regression Model. Fort Belvoir, VA: Defense Technical Information Center, lipiec 1989. http://dx.doi.org/10.21236/ada210272.
Pełny tekst źródłaTong, C. Toward a more robust variance-based global sensitivity analysis of model outputs. Office of Scientific and Technical Information (OSTI), październik 2007. http://dx.doi.org/10.2172/923115.
Pełny tekst źródłaRauscher, Harold M. The microcomputer scientific software series 3: general linear model--analysis of variance. St. Paul, MN: U.S. Department of Agriculture, Forest Service, North Central Forest Experiment Station, 1985. http://dx.doi.org/10.2737/nc-gtr-86.
Pełny tekst źródłaStock, James, i Mark Watson. Asymptotically Median Unbiased Estimation of Coefficient Variance in a Time Varying Parameter Model. Cambridge, MA: National Bureau of Economic Research, sierpień 1996. http://dx.doi.org/10.3386/t0201.
Pełny tekst źródłaHacker, Joshua P., Cari G. Kaufman i James Hansen. State-Space Analysis of Model Error: A Probabilistic Parameter Estimation Framework with Spatial Analysis of Variance. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2012. http://dx.doi.org/10.21236/ada574466.
Pełny tekst źródłaNelson, Charles, i Chang-Jin Kim. The Time-Varying-Parameter Model as an Alternative to ARCH for Modeling Changing Conditional Variance: The Case of Lucas Hypothesis. Cambridge, MA: National Bureau of Economic Research, wrzesień 1988. http://dx.doi.org/10.3386/t0070.
Pełny tekst źródłaOdom, Robert I. Seabed Variability and Its Influence on Acoustic Prediction Uncertainty Model and Data Variance and Resolution: How Do We Quantify Uncertainty? Fort Belvoir, VA: Defense Technical Information Center, sierpień 2002. http://dx.doi.org/10.21236/ada628078.
Pełny tekst źródłaOdom, Robert I. Seabed Variability and its Influence on Acoustic Prediction Uncertainty. Model and Data Variance and Resolution: How Do We Quantify Uncertainty? Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2003. http://dx.doi.org/10.21236/ada630037.
Pełny tekst źródłaOdom, Robert I. Seabed Variability and its Influence on Acoustic Prediction Uncertainty Model and Data Variance and Resolution: How Do We Quantify Uncertainty? Fort Belvoir, VA: Defense Technical Information Center, sierpień 2002. http://dx.doi.org/10.21236/ada627080.
Pełny tekst źródła