Gotowa bibliografia na temat „Variable sparsity kernel learning”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Variable sparsity kernel learning”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Variable sparsity kernel learning"
Chen, Jingxiang, Chong Zhang, Michael R. Kosorok i Yufeng Liu. "Double sparsity kernel learning with automatic variable selection and data extraction". Statistics and Its Interface 11, nr 3 (2018): 401–20. http://dx.doi.org/10.4310/sii.2018.v11.n3.a1.
Pełny tekst źródłaHuang, Yuan, i Shuangge Ma. "Discussion on “Double sparsity kernel learning with automatic variable selection and data extraction”". Statistics and Its Interface 11, nr 3 (2018): 421–22. http://dx.doi.org/10.4310/sii.2018.v11.n3.a2.
Pełny tekst źródłaLiu, Meimei, i Guang Cheng. "Discussion on “Double sparsity kernel learning with automatic variable selection and data extraction”". Statistics and Its Interface 11, nr 3 (2018): 423–24. http://dx.doi.org/10.4310/sii.2018.v11.n3.a3.
Pełny tekst źródłaZhang, Hao Helen. "Discussion on “Doubly sparsity kernel learning with automatic variable selection and data extraction”". Statistics and Its Interface 11, nr 3 (2018): 425–28. http://dx.doi.org/10.4310/sii.2018.v11.n3.a4.
Pełny tekst źródłaChen, Jingxiang, Chong Zhang, Michael R. Kosorok i Yufeng Liu. "Rejoinder of “Double sparsity kernel learning with automatic variable selection and data extraction”". Statistics and Its Interface 11, nr 3 (2018): 429–31. http://dx.doi.org/10.4310/sii.2018.v11.n3.a5.
Pełny tekst źródłaWang, Shuangyue, i Ziyan Luo. "Sparse Support Tensor Machine with Scaled Kernel Functions". Mathematics 11, nr 13 (24.06.2023): 2829. http://dx.doi.org/10.3390/math11132829.
Pełny tekst źródłaPan, Chao, Cheng Shi, Honglang Mu, Jie Li i Xinbo Gao. "EEG-Based Emotion Recognition Using Logistic Regression with Gaussian Kernel and Laplacian Prior and Investigation of Critical Frequency Bands". Applied Sciences 10, nr 5 (29.02.2020): 1619. http://dx.doi.org/10.3390/app10051619.
Pełny tekst źródłaKoltchinskii, Vladimir, i Ming Yuan. "Sparsity in multiple kernel learning". Annals of Statistics 38, nr 6 (grudzień 2010): 3660–95. http://dx.doi.org/10.1214/10-aos825.
Pełny tekst źródłaJiang, Zhengxiong, Yingsong Li, Xinqi Huang i Zhan Jin. "A Sparsity-Aware Variable Kernel Width Proportionate Affine Projection Algorithm for Identifying Sparse Systems". Symmetry 11, nr 10 (1.10.2019): 1218. http://dx.doi.org/10.3390/sym11101218.
Pełny tekst źródłaYuan, Ying, Weiming Lu, Fei Wu i Yueting Zhuang. "Multiple kernel learning with NOn-conVex group spArsity". Journal of Visual Communication and Image Representation 25, nr 7 (październik 2014): 1616–24. http://dx.doi.org/10.1016/j.jvcir.2014.08.001.
Pełny tekst źródłaRozprawy doktorskie na temat "Variable sparsity kernel learning"
Kolar, Mladen. "Uncovering Structure in High-Dimensions: Networks and Multi-task Learning Problems". Research Showcase @ CMU, 2013. http://repository.cmu.edu/dissertations/229.
Pełny tekst źródłaLe, Van Luong. "Identification de systèmes dynamiques hybrides : géométrie, parcimonie et non-linéarités". Phd thesis, Université de Lorraine, 2013. http://tel.archives-ouvertes.fr/tel-00874283.
Pełny tekst źródłaHakala, Tim. "Settling-Time Improvements in Positioning Machines Subject to Nonlinear Friction Using Adaptive Impulse Control". BYU ScholarsArchive, 2006. https://scholarsarchive.byu.edu/etd/1061.
Pełny tekst źródłaSankaran, Raman. "Structured Regularization Through Convex Relaxations Of Discrete Penalties". Thesis, 2018. https://etd.iisc.ac.in/handle/2005/5456.
Pełny tekst źródłaNaudé, Johannes Jochemus. "Aircraft recognition using generalised variable-kernel similarity metric learning". Thesis, 2014. http://hdl.handle.net/10210/13113.
Pełny tekst źródłaNearest neighbour classifiers are well suited for use in practical pattern recognition applications for a number of reasons, including ease of implementation, rapid training, justifiable decisions and low computational load. However their generalisation performance is perceived to be inferior to that of more complex methods such as neural networks or support vector machines. Closer inspection shows however that the generalisation performance actually varies widely depending on the dataset used. On certain problems they outperform all other known classifiers while on others they fail dismally. In this thesis we allege that their sensitivity to the metric used is the reason for their mercurial performance. We also discuss some of the remedies for this problem that have been suggested in the past, most notably the variable-kernel similarity metric learning technique, and introduce our own extension to this technique. Finally these metric learning techniques are evaluated on an aircraft recognition task and critically compared.
Hwang, Sung Ju. "Discriminative object categorization with external semantic knowledge". 2013. http://hdl.handle.net/2152/21320.
Pełny tekst źródłatext
Części książek na temat "Variable sparsity kernel learning"
Koltchinskii, Vladimir, Dmitry Panchenko i Savina Andonova. "Generalization Bounds for Voting Classifiers Based on Sparsity and Clustering". W Learning Theory and Kernel Machines, 492–505. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-45167-9_36.
Pełny tekst źródłaNaudé, Johannes J., Michaël A. van Wyk i Barend J. van Wyk. "Generalized Variable-Kernel Similarity Metric Learning". W Lecture Notes in Computer Science, 788–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-27868-9_86.
Pełny tekst źródłaU. Torun, Mustafa, Onur Yilmaz i Ali N. Akansu. "Explicit Kernel and Sparsity of Eigen Subspace for the AR(1) Process". W Financial Signal Processing and Machine Learning, 67–99. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781118745540.ch5.
Pełny tekst źródłaGregorová, Magda, Jason Ramapuram, Alexandros Kalousis i Stéphane Marchand-Maillet. "Large-Scale Nonlinear Variable Selection via Kernel Random Features". W Machine Learning and Knowledge Discovery in Databases, 177–92. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-10928-8_11.
Pełny tekst źródłaConnolly, Andrew J., Jacob T. VanderPlas, Alexander Gray, Andrew J. Connolly, Jacob T. VanderPlas i Alexander Gray. "Regression and Model Fitting". W Statistics, Data Mining, and Machine Learning in Astronomy. Princeton University Press, 2014. http://dx.doi.org/10.23943/princeton/9780691151687.003.0008.
Pełny tekst źródłaT., Subbulakshmi. "Combating Cyber Security Breaches in Digital World Using Misuse Detection Methods". W Advances in Digital Crime, Forensics, and Cyber Terrorism, 85–92. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-5225-0193-0.ch006.
Pełny tekst źródłaWong, Andrew K. C., Yang Wang i Gary C. L. Li. "Pattern Discovery as Event Association". W Machine Learning, 1924–32. IGI Global, 2012. http://dx.doi.org/10.4018/978-1-60960-818-7.ch804.
Pełny tekst źródłaStreszczenia konferencji na temat "Variable sparsity kernel learning"
Dellacasagrande, Matteo, Davide Lengani, Pietro Paliotta, Daniele Petronio, Daniele Simoni i Francesco Bertini. "Evaluation of Different Regression Models Tuned With Experimental Turbine Cascade Data". W ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/gt2022-81357.
Pełny tekst źródłaYokoi, Sho, Daichi Mochihashi, Ryo Takahashi, Naoaki Okazaki i Kentaro Inui. "Learning Co-Substructures by Kernel Dependence Maximization". W Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/465.
Pełny tekst źródłaVahdat, Arash, Kevin Cannons, Greg Mori, Sangmin Oh i Ilseo Kim. "Compositional Models for Video Event Detection: A Multiple Kernel Learning Latent Variable Approach". W 2013 IEEE International Conference on Computer Vision (ICCV). IEEE, 2013. http://dx.doi.org/10.1109/iccv.2013.463.
Pełny tekst źródłaHe, Jia, Changying Du, Changde Du, Fuzhen Zhuang, Qing He i Guoping Long. "Nonlinear Maximum Margin Multi-View Learning with Adaptive Kernel". W Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/254.
Pełny tekst źródłaGarcia-Vega, S., E. A. Leon-Gomez i G. Castellanos-Dominguez. "Time Series Prediction for Kernel-based Adaptive Filters Using Variable Bandwidth, Adaptive Learning-rate, and Dimensionality Reduction". W ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019. http://dx.doi.org/10.1109/icassp.2019.8683117.
Pełny tekst źródłaSclavounos, Paul D., i Yu Ma. "Artificial Intelligence Machine Learning in Marine Hydrodynamics". W ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/omae2018-77599.
Pełny tekst źródłaHu, Chao, Gaurav Jain, Craig Schmidt, Carrie Strief i Melani Sullivan. "Online Estimation of Lithium-Ion Battery Capacity Using Sparse Bayesian Learning". W ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-46964.
Pełny tekst źródłaLiu, Yanchi, Tan Yan i Haifeng Chen. "Exploiting Graph Regularized Multi-dimensional Hawkes Processes for Modeling Events with Spatio-temporal Characteristics". W Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/343.
Pełny tekst źródłaCheng, Hongliang, Weilin Yi i Luchen Ji. "Multi-Point Optimization Design of High Pressure-Ratio Centrifugal Impeller Based on Machine Learning". W ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/gt2020-14576.
Pełny tekst źródłaReda Ali, Ahmed, Makky Sandra Jaya i Ernest A. Jones. "Machine Learning Strategies for Accurate Log Prediction in Reservoir Characterization: Self-Calibrating Versus Domain-Knowledge". W SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition. SPE, 2021. http://dx.doi.org/10.2118/205602-ms.
Pełny tekst źródła