Artykuły w czasopismach na temat „Van der Waals (vdW) heterostructures”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Van der Waals (vdW) heterostructures”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Albarakati, Sultan, Cheng Tan, Zhong-Jia Chen, James G. Partridge, Guolin Zheng, Lawrence Farrar, Edwin L. H. Mayes i in. "Antisymmetric magnetoresistance in van der Waals Fe3GeTe2/graphite/Fe3GeTe2 trilayer heterostructures". Science Advances 5, nr 7 (lipiec 2019): eaaw0409. http://dx.doi.org/10.1126/sciadv.aaw0409.
Pełny tekst źródłaRakib, Tawfiqur, Pascal Pochet, Elif Ertekin i Harley T. Johnson. "Moiré engineering in van der Waals heterostructures". Journal of Applied Physics 132, nr 12 (28.09.2022): 120901. http://dx.doi.org/10.1063/5.0105405.
Pełny tekst źródłaMa, Zechen, Ruifeng Li, Rui Xiong, Yinggan Zhang, Chao Xu, Cuilian Wen i Baisheng Sa. "InSe/Te van der Waals Heterostructure as a High-Efficiency Solar Cell from Computational Screening". Materials 14, nr 14 (6.07.2021): 3768. http://dx.doi.org/10.3390/ma14143768.
Pełny tekst źródłaHe, Junshan, Cong Wang, Bo Zhou, Yu Zhao, Lili Tao i Han Zhang. "2D van der Waals heterostructures: processing, optical properties and applications in ultrafast photonics". Materials Horizons 7, nr 11 (2020): 2903–21. http://dx.doi.org/10.1039/d0mh00340a.
Pełny tekst źródłaDegaga, Gemechis D., Sumandeep Kaur, Ravindra Pandey i John A. Jaszczak. "First-Principles Study of a MoS2-PbS van der Waals Heterostructure Inspired by Naturally Occurring Merelaniite". Materials 14, nr 7 (27.03.2021): 1649. http://dx.doi.org/10.3390/ma14071649.
Pełny tekst źródłaLiu, Zixiang, i Zhiguo Wang. "Electronic Properties of MTe2/AsI3(M=Mo and W) Van der Waals Heterostructures". MATEC Web of Conferences 380 (2023): 01011. http://dx.doi.org/10.1051/matecconf/202338001011.
Pełny tekst źródłaYou, Siwen, Xiao Guo, Junjie Jiang, Dingbang Yang, Mingjun Li, Fangping Ouyang, Haipeng Xie, Han Huang i Yongli Gao. "Temperature−Dependent Raman Scattering Investigation on vdW Epitaxial PbI2/CrOCl Heterostructure". Crystals 13, nr 1 (6.01.2023): 104. http://dx.doi.org/10.3390/cryst13010104.
Pełny tekst źródłaSun, Cuicui, i Meili Qi. "Hybrid van der Waals heterojunction based on two-dimensional materials". Journal of Physics: Conference Series 2109, nr 1 (1.11.2021): 012012. http://dx.doi.org/10.1088/1742-6596/2109/1/012012.
Pełny tekst źródłaLi, Xufan, Ming-Wei Lin, Junhao Lin, Bing Huang, Alexander A. Puretzky, Cheng Ma, Kai Wang i in. "Two-dimensional GaSe/MoSe2misfit bilayer heterojunctions by van der Waals epitaxy". Science Advances 2, nr 4 (kwiecień 2016): e1501882. http://dx.doi.org/10.1126/sciadv.1501882.
Pełny tekst źródłaSong, Tiancheng, Xinghan Cai, Matisse Wei-Yuan Tu, Xiaoou Zhang, Bevin Huang, Nathan P. Wilson, Kyle L. Seyler i in. "Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures". Science 360, nr 6394 (3.05.2018): 1214–18. http://dx.doi.org/10.1126/science.aar4851.
Pełny tekst źródłaLu, Yueheng, Xiao Sun, Huabin Zhou, Haojie Lai, Ran Liu, Pengyi Liu, Yang Zhou i Weiguang Xie. "A high-performance and broadband two-dimensional perovskite-based photodetector via van der Waals integration". Applied Physics Letters 121, nr 16 (17.10.2022): 161104. http://dx.doi.org/10.1063/5.0116505.
Pełny tekst źródłaSaini, Himanshu, M. V. Jyothirmai, Umesh V. Waghmare i Ranjit Thapa. "Role of van der Waals interaction in enhancing the photon absorption capability of the MoS2/2D heterostructure". Physical Chemistry Chemical Physics 22, nr 5 (2020): 2775–82. http://dx.doi.org/10.1039/c9cp05782j.
Pełny tekst źródłaRen, Kai, Ruxin Zheng, Peng Xu, Dong Cheng, Wenyi Huo, Jin Yu, Zhuoran Zhang i Qingyun Sun. "Electronic and Optical Properties of Atomic-Scale Heterostructure Based on MXene and MN (M = Al, Ga): A DFT Investigation". Nanomaterials 11, nr 9 (30.08.2021): 2236. http://dx.doi.org/10.3390/nano11092236.
Pełny tekst źródłaEl-Sayed, Marwa A., Andrey P. Tselin, Georgy A. Ermolaev, Mikhail K. Tatmyshevskiy, Aleksandr S. Slavich, Dmitry I. Yakubovsky, Sergey M. Novikov, Andrey A. Vyshnevyy, Aleksey V. Arsenin i Valentyn S. Volkov. "Non-Additive Optical Response in Transition Metal Dichalcogenides Heterostructures". Nanomaterials 12, nr 24 (13.12.2022): 4436. http://dx.doi.org/10.3390/nano12244436.
Pełny tekst źródłaLuo, Cai-Yun, Wei-Qing Huang, Liang Xu, Yin-Cai Yang, Xiaofan Li, Wangyu Hu, P. Peng i Gui-Fang Huang. "Electronic properties and photoactivity of monolayer MoS2/fullerene van der Waals heterostructures". RSC Advances 6, nr 49 (2016): 43228–36. http://dx.doi.org/10.1039/c6ra05672e.
Pełny tekst źródłaKhan, Fawad, M. Idrees, C. Nguyen, Iftikhar Ahmad i Bin Amin. "A first-principles study of electronic structure and photocatalytic performance of GaN–MX2 (M = Mo, W; X= S, Se) van der Waals heterostructures". RSC Advances 10, nr 41 (2020): 24683–90. http://dx.doi.org/10.1039/d0ra04082g.
Pełny tekst źródłaBarik, Gayatree, i Sourav Pal. "Strain-engineered BlueP–MoS2 van der Waals heterostructure with improved lithiation/sodiation for LIBs and SIBs". Physical Chemistry Chemical Physics 22, nr 3 (2020): 1701–14. http://dx.doi.org/10.1039/c9cp04349g.
Pełny tekst źródłaDeng, Yafeng, Yixiang Li, Pengfei Wang, Shuang Wang, Xuan Pan i Dong Wang. "Observation of resistive switching in a graphite/hexagonal boron nitride/graphite heterostructure memristor". Journal of Semiconductors 43, nr 5 (1.05.2022): 052003. http://dx.doi.org/10.1088/1674-4926/43/5/052003.
Pełny tekst źródłaLiu, Zhiyi, Xiaomei Hu i Mingsheng Long. "High-performances ultraviolet photodetector based on vertical van der Waals heterostructures". Journal of Physics: Conference Series 2383, nr 1 (1.12.2022): 012037. http://dx.doi.org/10.1088/1742-6596/2383/1/012037.
Pełny tekst źródłaYou, Baiqing, Xiaocha Wang i Wenbo Mi. "Prediction of spin–orbital coupling effects on the electronic structure of two dimensional van der Waals heterostructures". Physical Chemistry Chemical Physics 17, nr 46 (2015): 31253–59. http://dx.doi.org/10.1039/c5cp05068e.
Pełny tekst źródłaGeng, Huijuan, Di Yuan, Zhi Yang, Zhenjie Tang, Xiwei Zhang, Kui Yang i Yanjie Su. "Graphene van der Waals heterostructures for high-performance photodetectors". Journal of Materials Chemistry C 7, nr 36 (2019): 11056–67. http://dx.doi.org/10.1039/c9tc03213d.
Pełny tekst źródłaGuo, Hongli, Xu Zhang i Gang Lu. "Moiré excitons in defective van der Waals heterostructures". Proceedings of the National Academy of Sciences 118, nr 32 (2.08.2021): e2105468118. http://dx.doi.org/10.1073/pnas.2105468118.
Pełny tekst źródłaBlackstone, Chance, i Anna Ignaszak. "Van der Waals Heterostructures—Recent Progress in Electrode Materials for Clean Energy Applications". Materials 14, nr 13 (5.07.2021): 3754. http://dx.doi.org/10.3390/ma14133754.
Pełny tekst źródłaAlam, Qaisar, S. Muhammad, M. Idrees, Nguyen V. Hieu, Nguyen T. T. Binh, C. Nguyen i Bin Amin. "First-principles study of the electronic structures and optical and photocatalytic performances of van der Waals heterostructures of SiS, P and SiC monolayers". RSC Advances 11, nr 24 (2021): 14263–68. http://dx.doi.org/10.1039/d0ra10808a.
Pełny tekst źródłaWang, Tao, Xiaoxing Tan, Yadong Wei i Hao Jin. "Unveiling the layer-dependent electronic properties in transition-metal dichalcogenide heterostructures assisted by machine learning". Nanoscale 14, nr 6 (2022): 2511–20. http://dx.doi.org/10.1039/d1nr07747c.
Pełny tekst źródłaPierucci, Debora, Aymen Mahmoudi, Mathieu Silly, Federico Bisti, Fabrice Oehler, Gilles Patriarche, Frédéric Bonell i in. "Evidence for highly p-type doping and type II band alignment in large scale monolayer WSe2/Se-terminated GaAs heterojunction grown by molecular beam epitaxy". Nanoscale 14, nr 15 (2022): 5859–68. http://dx.doi.org/10.1039/d2nr00458e.
Pełny tekst źródłaZhang, Wei, i Lifa Zhang. "Electric field tunable band-gap crossover in black(blue) phosphorus/g-ZnO van der Waals heterostructures". RSC Advances 7, nr 55 (2017): 34584–90. http://dx.doi.org/10.1039/c7ra06097a.
Pełny tekst źródłaGuo, Zhonglu, Naihua Miao, Jian Zhou, Baisheng Sa i Zhimei Sun. "Strain-mediated type-I/type-II transition in MXene/Blue phosphorene van der Waals heterostructures for flexible optical/electronic devices". Journal of Materials Chemistry C 5, nr 4 (2017): 978–84. http://dx.doi.org/10.1039/c6tc04349f.
Pełny tekst źródłaChaudhary, Kundan, Michele Tamagnone, Mehdi Rezaee, D. Kwabena Bediako, Antonio Ambrosio, Philip Kim i Federico Capasso. "Engineering phonon polaritons in van der Waals heterostructures to enhance in-plane optical anisotropy". Science Advances 5, nr 4 (kwiecień 2019): eaau7171. http://dx.doi.org/10.1126/sciadv.aau7171.
Pełny tekst źródłaIdrees, M., Chuong V. Nguyen, H. D. Bui, Iftikhar Ahmad i Bin Amin. "van der Waals heterostructures based on MSSe (M = Mo, W) and graphene-like GaN: enhanced optoelectronic and photocatalytic properties for water splitting". Physical Chemistry Chemical Physics 22, nr 36 (2020): 20704–11. http://dx.doi.org/10.1039/d0cp03434g.
Pełny tekst źródłaZhang, Zicheng, Tianlong Shi, Jingjing He, Chunsheng Liu, Lan Meng i Xiaohong Yan. "Tunable Schottky barrier in a graphene/AlP van der Waals heterostructure". Semiconductor Science and Technology 38, nr 4 (3.03.2023): 045009. http://dx.doi.org/10.1088/1361-6641/acbb1e.
Pełny tekst źródłaShin, Ki Hoon, Min-Kyu Seo, Sangyeon Pak, A.-Rang Jang i Jung Inn Sohn. "Observation of Strong Interlayer Couplings in WS2/MoS2 Heterostructures via Low-Frequency Raman Spectroscopy". Nanomaterials 12, nr 9 (19.04.2022): 1393. http://dx.doi.org/10.3390/nano12091393.
Pełny tekst źródłaDu, Juan, Congxin Xia, Wenqi Xiong, Tianxing Wang, Yu Jia i Jingbo Li. "Two-dimensional transition-metal dichalcogenides-based ferromagnetic van der Waals heterostructures". Nanoscale 9, nr 44 (2017): 17585–92. http://dx.doi.org/10.1039/c7nr06473j.
Pełny tekst źródłaZhang, W. X., Y. Yin i C. He. "Lowering the Schottky barrier height of G/WSSe van der Waals heterostructures by changing the interlayer coupling and applying external biaxial strain". Physical Chemistry Chemical Physics 22, nr 45 (2020): 26231–40. http://dx.doi.org/10.1039/d0cp04474a.
Pełny tekst źródłaPham, Khang D., Lam V. Tan, M. Idrees, Bin Amin, Nguyen N. Hieu, Huynh V. Phuc, Le T. Hoa i Nguyen V. Chuong. "Electronic structures, and optical and photocatalytic properties of the BP–BSe van der Waals heterostructures". New Journal of Chemistry 44, nr 35 (2020): 14964–69. http://dx.doi.org/10.1039/d0nj03236k.
Pełny tekst źródłaVasić, Borislav, Uroš Ralević, Sonja Aškrabić, Davor Čapeta i Marko Kralj. "Correlation between morphology and local mechanical and electrical properties of van der Waals heterostructures". Nanotechnology 33, nr 15 (21.01.2022): 155707. http://dx.doi.org/10.1088/1361-6528/ac475a.
Pełny tekst źródłaSantos, Elton J. G., Declan Scullion, Ximo S. Chu, Duo O. Li, Nathan P. Guisinger i Qing Hua Wang. "Rotational superstructure in van der Waals heterostructure of self-assembled C60 monolayer on the WSe2 surface". Nanoscale 9, nr 35 (2017): 13245–56. http://dx.doi.org/10.1039/c7nr03951d.
Pełny tekst źródłaZhu, Yuanzhi, Wenchao Peng, Yang Li, Guoliang Zhang, Fengbao Zhang i Xiaobin Fan. "Multiple roles of a heterointerface in two-dimensional van der Waals heterostructures: insights into energy-related applications". Journal of Materials Chemistry A 7, nr 41 (2019): 23577–603. http://dx.doi.org/10.1039/c9ta06395a.
Pełny tekst źródłaCheng, Beitong, Yong Zhou, Ruomei Jiang, Xule Wang, Shuai Huang, Xingyong Huang, Wei Zhang i in. "Structural, Electronic and Optical Properties of Some New Trilayer Van de Waals Heterostructures". Nanomaterials 13, nr 9 (8.05.2023): 1574. http://dx.doi.org/10.3390/nano13091574.
Pełny tekst źródłaTang, Kewei, Weihong Qi, Yejun Li i Tianran Wang. "Tuning the electronic properties of van der Waals heterostructures composed of black phosphorus and graphitic SiC". Physical Chemistry Chemical Physics 20, nr 46 (2018): 29333–40. http://dx.doi.org/10.1039/c8cp06170j.
Pełny tekst źródłaPham, Khang D., Cuong Q. Nguyen, C. V. Nguyen, Pham V. Cuong i Nguyen V. Hieu. "Two-dimensional van der Waals graphene/transition metal nitride heterostructures as promising high-performance nanodevices". New Journal of Chemistry 45, nr 12 (2021): 5509–16. http://dx.doi.org/10.1039/d1nj00374g.
Pełny tekst źródłaAres, Pablo, Yi Bo Wang, Colin R. Woods, James Dougherty, Laura Fumagalli, Francisco Guinea, Benny Davidovitch i Kostya S. Novoselov. "Van der Waals interaction affects wrinkle formation in two-dimensional materials". Proceedings of the National Academy of Sciences 118, nr 14 (31.03.2021): e2025870118. http://dx.doi.org/10.1073/pnas.2025870118.
Pełny tekst źródłaWu, Huihai, Xiaochuan Liu, Keyong Zhu i Yong Huang. "Fano Resonance in Near-Field Thermal Radiation of Two-Dimensional Van der Waals Heterostructures". Nanomaterials 13, nr 8 (20.04.2023): 1425. http://dx.doi.org/10.3390/nano13081425.
Pełny tekst źródłaMaruyama, Shigeo. "(Invited) Synthesis and Application of One-Dimensional Van Der Waals Heterostrucures Based on Single-Walled Carbon Nanotubes". ECS Meeting Abstracts MA2022-01, nr 9 (7.07.2022): 724. http://dx.doi.org/10.1149/ma2022-019724mtgabs.
Pełny tekst źródłaLu, Hao, Junfeng Gao, Ziyu Hu i Xiaohong Shao. "Biaxial strain effect on electronic structure tuning in antimonene-based van der Waals heterostructures". RSC Advances 6, nr 104 (2016): 102724–32. http://dx.doi.org/10.1039/c6ra21781h.
Pełny tekst źródłaBehera, Sushant Kumar, i Pritam Deb. "Spin-transfer-torque mediated quantum magnetotransport in MoS2/phosphorene vdW heterostructure based MTJs". Physical Chemistry Chemical Physics 22, nr 34 (2020): 19139–46. http://dx.doi.org/10.1039/d0cp00836b.
Pełny tekst źródłaJiang, Pingping, Pascal Boulet i Marie-Christine Record. "Structure-Property Relationships of 2D Ga/In Chalcogenides". Nanomaterials 10, nr 11 (2.11.2020): 2188. http://dx.doi.org/10.3390/nano10112188.
Pełny tekst źródłaNiu, Xianghong, Shanshan Xiao, Dazhong Sun, Anqi Shi, Zhaobo Zhou, Wei Chen, Xing’ao Li i Jinlan Wang. "Direct formation of interlayer exciton in two-dimensional van der Waals heterostructures". Materials Horizons 8, nr 8 (2021): 2208–15. http://dx.doi.org/10.1039/d1mh00571e.
Pełny tekst źródłaZhao, Bing, Bogdan Karpiak, Md Anamul Md Hoque, Pallavi Dhagat i Saroj Prasad Dash. "Strong perpendicular anisotropic ferromagnet Fe3GeTe2/graphene van der Waals heterostructure". Journal of Physics D: Applied Physics, 1.02.2023. http://dx.doi.org/10.1088/1361-6463/acb801.
Pełny tekst źródłaZheng, Z. Q., Zihao Huang, Yuchen Zhou, Zhongtong Luo, Yibin Yang, Mengmeng Yang, Wei Gao i in. "Integration of Photovoltaic and Photogating Effects in WSe2/WS2/p-Si Dual Junction Photodetector Featuring High-Sensitivity and Fast-Response". Nanoscale Advances, 2023. http://dx.doi.org/10.1039/d2na00552b.
Pełny tekst źródła