Artykuły w czasopismach na temat „Van der Waals Hybrids”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Van der Waals Hybrids”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Karnatak, Paritosh, Tathagata Paul, Saurav Islam i Arindam Ghosh. "1 / f noise in van der Waals materials and hybrids". Advances in Physics: X 2, nr 2 (4.03.2017): 428–49. http://dx.doi.org/10.1080/23746149.2017.1314192.
Pełny tekst źródłaSett, Shaili, Aparna Parappurath, Navkiranjot Kaur Gill, Neha Chauhan i Arindam Ghosh. "Engineering sensitivity and spectral range of photodetection in van der Waals materials and hybrids". Nano Express 3, nr 1 (21.01.2022): 014001. http://dx.doi.org/10.1088/2632-959x/ac46b9.
Pełny tekst źródłaShukla, Vivekanand, Yang Jiao, Carl M. Frostenson i Per Hyldgaard. "vdW-DF-ahcx: a range-separated van der Waals density functional hybrid". Journal of Physics: Condensed Matter 34, nr 2 (1.11.2021): 025902. http://dx.doi.org/10.1088/1361-648x/ac2ad2.
Pełny tekst źródłaGuo, L. L., L. M. Chen, H. X. Liu i Shi Xi Ouyang. "The Influence of the Interactions between the Organic and Inorganic Species on the Structural Stabilities of Hybrids (CnH2n+1NH3)2 MCl4". Solid State Phenomena 111 (kwiecień 2006): 143–46. http://dx.doi.org/10.4028/www.scientific.net/ssp.111.143.
Pełny tekst źródłaAhmed, Tanweer, Saurav Islam, Tathagata Paul, N. Hariharan, Suja Elizabeth i Arindam Ghosh. "A generic method to control hysteresis and memory effect in Van der Waals hybrids". Materials Research Express 7, nr 1 (21.01.2020): 014004. http://dx.doi.org/10.1088/2053-1591/ab6923.
Pełny tekst źródłaWang, Hao-Fan, Cheng Tang i Qiang Zhang. "A review of graphene-based 3D van der Waals hybrids and their energy applications". Nano Today 25 (kwiecień 2019): 27–37. http://dx.doi.org/10.1016/j.nantod.2019.02.006.
Pełny tekst źródłaLi, Mingxing, Jia-Shiang Chen i Mircea Cotlet. "Light-Induced Interfacial Phenomena in Atomically Thin 2D van der Waals Material Hybrids and Heterojunctions". ACS Energy Letters 4, nr 9 (5.08.2019): 2323–35. http://dx.doi.org/10.1021/acsenergylett.9b01399.
Pełny tekst źródłaIdrees, M., H. U. Din, R. Ali, G. Rehman, T. Hussain, C. V. Nguyen, Iftikhar Ahmad i B. Amin. "Optoelectronic and solar cell applications of Janus monolayers and their van der Waals heterostructures". Physical Chemistry Chemical Physics 21, nr 34 (2019): 18612–21. http://dx.doi.org/10.1039/c9cp02648g.
Pełny tekst źródłaNguyen, Dinh Huong, i Dai Soo Lee. "Hybrids of Graphenes and Silver Nanoparticles Prepared by In Situ Process Employing Microwaveirradiation". Advanced Materials Research 646 (styczeń 2013): 97–100. http://dx.doi.org/10.4028/www.scientific.net/amr.646.97.
Pełny tekst źródłaEsquivel-Sirvent, Raul. "Finite-Size Effects of Casimir–van der Waals Forces in the Self-Assembly of Nanoparticles". Physics 5, nr 1 (21.03.2023): 322–30. http://dx.doi.org/10.3390/physics5010024.
Pełny tekst źródłaWang, Haizhen, Jiaqi Ma i Dehui Li. "Two-Dimensional Hybrid Perovskite-Based van der Waals Heterostructures". Journal of Physical Chemistry Letters 12, nr 34 (20.08.2021): 8178–87. http://dx.doi.org/10.1021/acs.jpclett.1c02290.
Pełny tekst źródłaErnandes, Cyrine, Lama Khalil, Hugo Henck, Meng-Qiang Zhao, Julien Chaste, Fabrice Oehler, Alan T. Charlie Johnson i in. "Strain and Spin-Orbit Coupling Engineering in Twisted WS2/Graphene Heterobilayer". Nanomaterials 11, nr 11 (31.10.2021): 2921. http://dx.doi.org/10.3390/nano11112921.
Pełny tekst źródłaGerrer, Thomas, Volker Cimalla, Patrick Waltereit, Stefan Müller, Fouad Benkhelifa, Thomas Maier, Heiko Czap, Oliver Ambacher i Rüdiger Quay. "Transfer of AlGaN/GaN RF-devices onto diamond substrates via van der Waals bonding". International Journal of Microwave and Wireless Technologies 10, nr 5-6 (25.04.2018): 666–73. http://dx.doi.org/10.1017/s1759078718000582.
Pełny tekst źródłaSternbach, A. J., S. L. Moore, A. Rikhter, S. Zhang, R. Jing, Y. Shao, B. S. Y. Kim i in. "Negative refraction in hyperbolic hetero-bicrystals". Science 379, nr 6632 (10.02.2023): 555–57. http://dx.doi.org/10.1126/science.adf1065.
Pełny tekst źródłaZhang, Lixiu, Bing Lu, Yuhou Wu, Junhai Wang, Xinyue Zhang, Liyan Wang i Dongyang Xi. "Molecular dynamics simulation and experimental study on the lubrication of graphene additive films". Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 234, nr 12 (10.01.2020): 1957–72. http://dx.doi.org/10.1177/1350650119899213.
Pełny tekst źródłaYANG, PING, XIALONG LI, YANFANG ZHAO, HAIYING YANG, SHUTING WANG i JIANMING YANG. "INVESTIGATION FOR MOLECULAR ATTRACTION IMPACT BETWEEN CONTACTING SURFACES IN MICRO-GEARS". International Journal of Modern Physics B 27, nr 27 (15.10.2013): 1350150. http://dx.doi.org/10.1142/s0217979213501506.
Pełny tekst źródłaAlam, Qaisar, S. Muhammad, M. Idrees, Nguyen V. Hieu, Nguyen T. T. Binh, C. Nguyen i Bin Amin. "First-principles study of the electronic structures and optical and photocatalytic performances of van der Waals heterostructures of SiS, P and SiC monolayers". RSC Advances 11, nr 24 (2021): 14263–68. http://dx.doi.org/10.1039/d0ra10808a.
Pełny tekst źródłaPierucci, Debora, Aymen Mahmoudi, Mathieu Silly, Federico Bisti, Fabrice Oehler, Gilles Patriarche, Frédéric Bonell i in. "Evidence for highly p-type doping and type II band alignment in large scale monolayer WSe2/Se-terminated GaAs heterojunction grown by molecular beam epitaxy". Nanoscale 14, nr 15 (2022): 5859–68. http://dx.doi.org/10.1039/d2nr00458e.
Pełny tekst źródłaZhang, Wei, i Lifa Zhang. "Electric field tunable band-gap crossover in black(blue) phosphorus/g-ZnO van der Waals heterostructures". RSC Advances 7, nr 55 (2017): 34584–90. http://dx.doi.org/10.1039/c7ra06097a.
Pełny tekst źródłaZheng, Zhikun, Xianghui Zhang, Christof Neumann, Daniel Emmrich, Andreas Winter, Henning Vieker, Wei Liu, Marga Lensen, Armin Gölzhäuser i Andrey Turchanin. "Hybrid van der Waals heterostructures of zero-dimensional and two-dimensional materials". Nanoscale 7, nr 32 (2015): 13393–97. http://dx.doi.org/10.1039/c5nr03475b.
Pełny tekst źródłaQuhe, Ruge, Yangyang Wang, Meng Ye, Qiaoxuan Zhang, Jie Yang, Pengfei Lu, Ming Lei i Jing Lu. "Black phosphorus transistors with van der Waals-type electrical contacts". Nanoscale 9, nr 37 (2017): 14047–57. http://dx.doi.org/10.1039/c7nr03941g.
Pełny tekst źródłaWang, Biao, Xukai Luo, Junli Chang, Xiaorui Chen, Hongkuan Yuan i Hong Chen. "Efficient charge separation and visible-light response in bilayer HfS2-based van der Waals heterostructures". RSC Advances 8, nr 34 (2018): 18889–95. http://dx.doi.org/10.1039/c8ra03047b.
Pełny tekst źródłaChen, Guoping, Lok Kumar Shrestha i Katsuhiko Ariga. "Zero-to-Two Nanoarchitectonics: Fabrication of Two-Dimensional Materials from Zero-Dimensional Fullerene". Molecules 26, nr 15 (30.07.2021): 4636. http://dx.doi.org/10.3390/molecules26154636.
Pełny tekst źródłaPark, Seo Yun, Yeon Hoo Kim, Seon Yong Lee, Woonbae Sohn, Jung Eun Lee, Do Hong Kim, Young-Seok Shim i in. "Highly selective and sensitive chemoresistive humidity sensors based on rGO/MoS2 van der Waals composites". Journal of Materials Chemistry A 6, nr 12 (2018): 5016–24. http://dx.doi.org/10.1039/c7ta11375g.
Pełny tekst źródłaMondal, Chiranjit, Sourabh Kumar i Biswarup Pathak. "Topologically protected hybrid states in graphene–stanene–graphene heterojunctions". Journal of Materials Chemistry C 6, nr 8 (2018): 1920–25. http://dx.doi.org/10.1039/c7tc05212j.
Pełny tekst źródłaDOBSON, J. F. "ELECTRON DENSITY FUNCTIONAL THEORY". International Journal of Modern Physics B 13, nr 05n06 (10.03.1999): 511–23. http://dx.doi.org/10.1142/s0217979299000412.
Pełny tekst źródłaRehman, Gul, S. A. Khan, B. Amin, Iftikhar Ahmad, Li-Yong Gan i Muhammad Maqbool. "Intriguing electronic structures and optical properties of two-dimensional van der Waals heterostructures of Zr2CT2 (T = O, F) with MoSe2 and WSe2". Journal of Materials Chemistry C 6, nr 11 (2018): 2830–39. http://dx.doi.org/10.1039/c7tc05963a.
Pełny tekst źródłaSun, Cuicui, i Meili Qi. "Hybrid van der Waals heterojunction based on two-dimensional materials". Journal of Physics: Conference Series 2109, nr 1 (1.11.2021): 012012. http://dx.doi.org/10.1088/1742-6596/2109/1/012012.
Pełny tekst źródłaOrgiu, Emanuele. "(Invited) Hybrid Van Der Waals Heterostructures: From Fundamentals to Applications". ECS Meeting Abstracts MA2021-01, nr 12 (30.05.2021): 592. http://dx.doi.org/10.1149/ma2021-0112592mtgabs.
Pełny tekst źródłaLakhina, Olga, i Eric S. Swanson. "Hybrid meson potentials and the gluonic van der Waals force". Physics Letters B 582, nr 3-4 (marzec 2004): 172–78. http://dx.doi.org/10.1016/j.physletb.2004.01.011.
Pełny tekst źródłaOrgiu, Emanuele. "(Invited) Hybrid Van Der Waals Heterostructures: From Fundamentals to Applications". ECS Meeting Abstracts MA2020-01, nr 8 (1.05.2020): 741. http://dx.doi.org/10.1149/ma2020-018741mtgabs.
Pełny tekst źródłaSantos, Elton J. G., Declan Scullion, Ximo S. Chu, Duo O. Li, Nathan P. Guisinger i Qing Hua Wang. "Rotational superstructure in van der Waals heterostructure of self-assembled C60 monolayer on the WSe2 surface". Nanoscale 9, nr 35 (2017): 13245–56. http://dx.doi.org/10.1039/c7nr03951d.
Pełny tekst źródłaChen, Yuxuan, Xinguo Ma, Di Li, Huihu Wang i Chuyun Huang. "Mechanism of enhancing visible-light photocatalytic activity of BiVO4via hybridization of graphene based on a first-principles study". RSC Advances 7, nr 8 (2017): 4395–401. http://dx.doi.org/10.1039/c6ra25721f.
Pełny tekst źródłaLiu, Yibo, i Juewen Liu. "Hybrid nanomaterials of WS2 or MoS2 nanosheets with liposomes: biointerfaces and multiplexed drug delivery". Nanoscale 9, nr 35 (2017): 13187–94. http://dx.doi.org/10.1039/c7nr04199c.
Pełny tekst źródłaCai, Baofang, Huan Yin, Tingting Huo, Jun Ma, Zengfeng Di, Ming Li, Nantao Hu, Zhi Yang, Yafei Zhang i Yanjie Su. "Semiconducting single-walled carbon nanotube/graphene van der Waals junctions for highly sensitive all-carbon hybrid humidity sensors". Journal of Materials Chemistry C 8, nr 10 (2020): 3386–94. http://dx.doi.org/10.1039/c9tc06586e.
Pełny tekst źródłaGao, Guoping, Yan Jiao, Fengxian Ma, Yalong Jiao, Eric Waclawik i Aijun Du. "Carbon nanodot decorated graphitic carbon nitride: new insights into the enhanced photocatalytic water splitting from ab initio studies". Physical Chemistry Chemical Physics 17, nr 46 (2015): 31140–44. http://dx.doi.org/10.1039/c5cp05512a.
Pełny tekst źródłaMajumdar, Aniket, Saloni Kakkar, Nivedith Kuttikunnummal Anil, Tathagata Paul, T. Phanindra Sai, Kenji Watanabe, Takashi Taniguchi i Arindam Ghosh. "Probing the charge and heat transfer channels in optically excited graphene — transition metal dichalcogenide hybrids using Johnson noise thermometry". Applied Physics Letters 121, nr 4 (25.07.2022): 041103. http://dx.doi.org/10.1063/5.0099383.
Pełny tekst źródłaTang, Qianying, Fang Zhong, Qing Li, Jialu Weng, Junzhe Li, Hangyu Lu, Haitao Wu i in. "Infrared Photodetection from 2D/3D van der Waals Heterostructures". Nanomaterials 13, nr 7 (24.03.2023): 1169. http://dx.doi.org/10.3390/nano13071169.
Pełny tekst źródłaZhou, Congcong, Xiaodan Li i Taotao Hu. "Structural and Electronic Properties of Heterostructures Composed of Antimonene and Monolayer MoS2". Nanomaterials 10, nr 12 (27.11.2020): 2358. http://dx.doi.org/10.3390/nano10122358.
Pełny tekst źródłaJayanand, Kishan, i Anupama B. Kaul. "Photodetectors with Buckminsterfullerene Decorated WSe2". Journal of The Electrochemical Society 169, nr 4 (1.04.2022): 047503. http://dx.doi.org/10.1149/1945-7111/ac6074.
Pełny tekst źródłaRosul, Md Golam, Doeon Lee, David H. Olson, Naiming Liu, Xiaoming Wang, Patrick E. Hopkins, Kyusang Lee i Mona Zebarjadi. "Thermionic transport across gold-graphene-WSe2 van der Waals heterostructures". Science Advances 5, nr 11 (listopad 2019): eaax7827. http://dx.doi.org/10.1126/sciadv.aax7827.
Pełny tekst źródłaHu, Yunsheng, Yihua Bai, Qing Zhang i Yuanjie Yang. "Electrically controlled molecular fingerprint retrieval with van der Waals metasurface". Applied Physics Letters 121, nr 14 (3.10.2022): 141701. http://dx.doi.org/10.1063/5.0111940.
Pełny tekst źródłaAkram, Bilal, Bing Ni i Xun Wang. "Van der Waals Integrated Hybrid POM‐Zirconia Flexible Belt‐Like Superstructures". Advanced Materials 32, nr 2 (27.11.2019): 1906794. http://dx.doi.org/10.1002/adma.201906794.
Pełny tekst źródłaSingh, Kangujam Priyokumar, i Mahbubur Rahman Mollah. "Bianchi type III cosmological model with hybrid scale factor in the presence of Van der Waals fluid in Lyra manifold". International Journal of Modern Physics A 33, nr 35 (20.12.2018): 1850207. http://dx.doi.org/10.1142/s0217751x1850207x.
Pełny tekst źródłaMeftakhutdinov, Ruslan M., i Renat T. Sibatov. "Janus Type Monolayers of S-MoSiN2 Family and Van Der Waals Heterostructures with Graphene: DFT-Based Study". Nanomaterials 12, nr 21 (5.11.2022): 3904. http://dx.doi.org/10.3390/nano12213904.
Pełny tekst źródłaYu, Xianbo, Guangyu Zhao, Canlong Wu, Huihuang Huang, Chao Liu, Xiaojie Shen, Ming Wang, Xiaoming Bai i Naiqing Zhang. "Constructing anion vacancy-rich MoSSe/G van der Waals heterostructures for high-performance Mg–Li hybrid-ion batteries". Journal of Materials Chemistry A 9, nr 40 (2021): 23276–85. http://dx.doi.org/10.1039/d1ta07787b.
Pełny tekst źródłaHe, Chunhui, Qian Zhang, Tingwei Gao, Chenguang Liu, Zhenyu Chen, Cezhou Zhao, Chun Zhao, Richard J. Nichols, Yannick J. Dappe i Li Yang. "Charge transport in hybrid platinum/molecule/graphene single molecule junctions". Physical Chemistry Chemical Physics 22, nr 24 (2020): 13498–504. http://dx.doi.org/10.1039/d0cp01774d.
Pełny tekst źródłaLai, Shen, Seongjae Byeon, Sung Kyu Jang, Juho Lee, Byoung Hun Lee, Jin-Hong Park, Yong-Hoon Kim i Sungjoo Lee. "HfO2/HfS2 hybrid heterostructure fabricated via controllable chemical conversion of two-dimensional HfS2". Nanoscale 10, nr 39 (2018): 18758–66. http://dx.doi.org/10.1039/c8nr06020g.
Pełny tekst źródłaHuang, Ko-Fan, Önder Gül, Takashi Taniguchi, Kenji Watanabe i Philip Kim. "Andreev reflection between aluminum and graphene across van der Waals barriers". Low Temperature Physics 49, nr 6 (1.06.2023): 662–69. http://dx.doi.org/10.1063/10.0019423.
Pełny tekst źródłaLaref, Slimane, Bin Wang, Xin Gao i Takashi Gojobori. "Computational Studies of Auto-Active van der Waals Interaction Molecules on Ultra-Thin Black-Phosphorus Film". Molecules 28, nr 2 (9.01.2023): 681. http://dx.doi.org/10.3390/molecules28020681.
Pełny tekst źródła