Artykuły w czasopismach na temat „Van der Waals Hybrid”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Van der Waals Hybrid”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Wang, Haizhen, Jiaqi Ma i Dehui Li. "Two-Dimensional Hybrid Perovskite-Based van der Waals Heterostructures". Journal of Physical Chemistry Letters 12, nr 34 (20.08.2021): 8178–87. http://dx.doi.org/10.1021/acs.jpclett.1c02290.
Pełny tekst źródłaIdrees, M., H. U. Din, R. Ali, G. Rehman, T. Hussain, C. V. Nguyen, Iftikhar Ahmad i B. Amin. "Optoelectronic and solar cell applications of Janus monolayers and their van der Waals heterostructures". Physical Chemistry Chemical Physics 21, nr 34 (2019): 18612–21. http://dx.doi.org/10.1039/c9cp02648g.
Pełny tekst źródłaMondal, Chiranjit, Sourabh Kumar i Biswarup Pathak. "Topologically protected hybrid states in graphene–stanene–graphene heterojunctions". Journal of Materials Chemistry C 6, nr 8 (2018): 1920–25. http://dx.doi.org/10.1039/c7tc05212j.
Pełny tekst źródłaShukla, Vivekanand, Yang Jiao, Carl M. Frostenson i Per Hyldgaard. "vdW-DF-ahcx: a range-separated van der Waals density functional hybrid". Journal of Physics: Condensed Matter 34, nr 2 (1.11.2021): 025902. http://dx.doi.org/10.1088/1361-648x/ac2ad2.
Pełny tekst źródłaZheng, Zhikun, Xianghui Zhang, Christof Neumann, Daniel Emmrich, Andreas Winter, Henning Vieker, Wei Liu, Marga Lensen, Armin Gölzhäuser i Andrey Turchanin. "Hybrid van der Waals heterostructures of zero-dimensional and two-dimensional materials". Nanoscale 7, nr 32 (2015): 13393–97. http://dx.doi.org/10.1039/c5nr03475b.
Pełny tekst źródłaAlam, Qaisar, S. Muhammad, M. Idrees, Nguyen V. Hieu, Nguyen T. T. Binh, C. Nguyen i Bin Amin. "First-principles study of the electronic structures and optical and photocatalytic performances of van der Waals heterostructures of SiS, P and SiC monolayers". RSC Advances 11, nr 24 (2021): 14263–68. http://dx.doi.org/10.1039/d0ra10808a.
Pełny tekst źródłaPierucci, Debora, Aymen Mahmoudi, Mathieu Silly, Federico Bisti, Fabrice Oehler, Gilles Patriarche, Frédéric Bonell i in. "Evidence for highly p-type doping and type II band alignment in large scale monolayer WSe2/Se-terminated GaAs heterojunction grown by molecular beam epitaxy". Nanoscale 14, nr 15 (2022): 5859–68. http://dx.doi.org/10.1039/d2nr00458e.
Pełny tekst źródłaZhang, Wei, i Lifa Zhang. "Electric field tunable band-gap crossover in black(blue) phosphorus/g-ZnO van der Waals heterostructures". RSC Advances 7, nr 55 (2017): 34584–90. http://dx.doi.org/10.1039/c7ra06097a.
Pełny tekst źródłaSun, Cuicui, i Meili Qi. "Hybrid van der Waals heterojunction based on two-dimensional materials". Journal of Physics: Conference Series 2109, nr 1 (1.11.2021): 012012. http://dx.doi.org/10.1088/1742-6596/2109/1/012012.
Pełny tekst źródłaOrgiu, Emanuele. "(Invited) Hybrid Van Der Waals Heterostructures: From Fundamentals to Applications". ECS Meeting Abstracts MA2021-01, nr 12 (30.05.2021): 592. http://dx.doi.org/10.1149/ma2021-0112592mtgabs.
Pełny tekst źródłaLakhina, Olga, i Eric S. Swanson. "Hybrid meson potentials and the gluonic van der Waals force". Physics Letters B 582, nr 3-4 (marzec 2004): 172–78. http://dx.doi.org/10.1016/j.physletb.2004.01.011.
Pełny tekst źródłaOrgiu, Emanuele. "(Invited) Hybrid Van Der Waals Heterostructures: From Fundamentals to Applications". ECS Meeting Abstracts MA2020-01, nr 8 (1.05.2020): 741. http://dx.doi.org/10.1149/ma2020-018741mtgabs.
Pełny tekst źródłaEsquivel-Sirvent, Raul. "Finite-Size Effects of Casimir–van der Waals Forces in the Self-Assembly of Nanoparticles". Physics 5, nr 1 (21.03.2023): 322–30. http://dx.doi.org/10.3390/physics5010024.
Pełny tekst źródłaQuhe, Ruge, Yangyang Wang, Meng Ye, Qiaoxuan Zhang, Jie Yang, Pengfei Lu, Ming Lei i Jing Lu. "Black phosphorus transistors with van der Waals-type electrical contacts". Nanoscale 9, nr 37 (2017): 14047–57. http://dx.doi.org/10.1039/c7nr03941g.
Pełny tekst źródłaWang, Biao, Xukai Luo, Junli Chang, Xiaorui Chen, Hongkuan Yuan i Hong Chen. "Efficient charge separation and visible-light response in bilayer HfS2-based van der Waals heterostructures". RSC Advances 8, nr 34 (2018): 18889–95. http://dx.doi.org/10.1039/c8ra03047b.
Pełny tekst źródłaChen, Guoping, Lok Kumar Shrestha i Katsuhiko Ariga. "Zero-to-Two Nanoarchitectonics: Fabrication of Two-Dimensional Materials from Zero-Dimensional Fullerene". Molecules 26, nr 15 (30.07.2021): 4636. http://dx.doi.org/10.3390/molecules26154636.
Pełny tekst źródłaPark, Seo Yun, Yeon Hoo Kim, Seon Yong Lee, Woonbae Sohn, Jung Eun Lee, Do Hong Kim, Young-Seok Shim i in. "Highly selective and sensitive chemoresistive humidity sensors based on rGO/MoS2 van der Waals composites". Journal of Materials Chemistry A 6, nr 12 (2018): 5016–24. http://dx.doi.org/10.1039/c7ta11375g.
Pełny tekst źródłaDOBSON, J. F. "ELECTRON DENSITY FUNCTIONAL THEORY". International Journal of Modern Physics B 13, nr 05n06 (10.03.1999): 511–23. http://dx.doi.org/10.1142/s0217979299000412.
Pełny tekst źródłaRehman, Gul, S. A. Khan, B. Amin, Iftikhar Ahmad, Li-Yong Gan i Muhammad Maqbool. "Intriguing electronic structures and optical properties of two-dimensional van der Waals heterostructures of Zr2CT2 (T = O, F) with MoSe2 and WSe2". Journal of Materials Chemistry C 6, nr 11 (2018): 2830–39. http://dx.doi.org/10.1039/c7tc05963a.
Pełny tekst źródłaSantos, Elton J. G., Declan Scullion, Ximo S. Chu, Duo O. Li, Nathan P. Guisinger i Qing Hua Wang. "Rotational superstructure in van der Waals heterostructure of self-assembled C60 monolayer on the WSe2 surface". Nanoscale 9, nr 35 (2017): 13245–56. http://dx.doi.org/10.1039/c7nr03951d.
Pełny tekst źródłaChen, Yuxuan, Xinguo Ma, Di Li, Huihu Wang i Chuyun Huang. "Mechanism of enhancing visible-light photocatalytic activity of BiVO4via hybridization of graphene based on a first-principles study". RSC Advances 7, nr 8 (2017): 4395–401. http://dx.doi.org/10.1039/c6ra25721f.
Pełny tekst źródłaErnandes, Cyrine, Lama Khalil, Hugo Henck, Meng-Qiang Zhao, Julien Chaste, Fabrice Oehler, Alan T. Charlie Johnson i in. "Strain and Spin-Orbit Coupling Engineering in Twisted WS2/Graphene Heterobilayer". Nanomaterials 11, nr 11 (31.10.2021): 2921. http://dx.doi.org/10.3390/nano11112921.
Pełny tekst źródłaLiu, Yibo, i Juewen Liu. "Hybrid nanomaterials of WS2 or MoS2 nanosheets with liposomes: biointerfaces and multiplexed drug delivery". Nanoscale 9, nr 35 (2017): 13187–94. http://dx.doi.org/10.1039/c7nr04199c.
Pełny tekst źródłaGao, Guoping, Yan Jiao, Fengxian Ma, Yalong Jiao, Eric Waclawik i Aijun Du. "Carbon nanodot decorated graphitic carbon nitride: new insights into the enhanced photocatalytic water splitting from ab initio studies". Physical Chemistry Chemical Physics 17, nr 46 (2015): 31140–44. http://dx.doi.org/10.1039/c5cp05512a.
Pełny tekst źródłaAkram, Bilal, Bing Ni i Xun Wang. "Van der Waals Integrated Hybrid POM‐Zirconia Flexible Belt‐Like Superstructures". Advanced Materials 32, nr 2 (27.11.2019): 1906794. http://dx.doi.org/10.1002/adma.201906794.
Pełny tekst źródłaZhang, Lixiu, Bing Lu, Yuhou Wu, Junhai Wang, Xinyue Zhang, Liyan Wang i Dongyang Xi. "Molecular dynamics simulation and experimental study on the lubrication of graphene additive films". Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 234, nr 12 (10.01.2020): 1957–72. http://dx.doi.org/10.1177/1350650119899213.
Pełny tekst źródłaYANG, PING, XIALONG LI, YANFANG ZHAO, HAIYING YANG, SHUTING WANG i JIANMING YANG. "INVESTIGATION FOR MOLECULAR ATTRACTION IMPACT BETWEEN CONTACTING SURFACES IN MICRO-GEARS". International Journal of Modern Physics B 27, nr 27 (15.10.2013): 1350150. http://dx.doi.org/10.1142/s0217979213501506.
Pełny tekst źródłaCai, Baofang, Huan Yin, Tingting Huo, Jun Ma, Zengfeng Di, Ming Li, Nantao Hu, Zhi Yang, Yafei Zhang i Yanjie Su. "Semiconducting single-walled carbon nanotube/graphene van der Waals junctions for highly sensitive all-carbon hybrid humidity sensors". Journal of Materials Chemistry C 8, nr 10 (2020): 3386–94. http://dx.doi.org/10.1039/c9tc06586e.
Pełny tekst źródłaHe, Chunhui, Qian Zhang, Tingwei Gao, Chenguang Liu, Zhenyu Chen, Cezhou Zhao, Chun Zhao, Richard J. Nichols, Yannick J. Dappe i Li Yang. "Charge transport in hybrid platinum/molecule/graphene single molecule junctions". Physical Chemistry Chemical Physics 22, nr 24 (2020): 13498–504. http://dx.doi.org/10.1039/d0cp01774d.
Pełny tekst źródłaSingh, Kangujam Priyokumar, i Mahbubur Rahman Mollah. "Bianchi type III cosmological model with hybrid scale factor in the presence of Van der Waals fluid in Lyra manifold". International Journal of Modern Physics A 33, nr 35 (20.12.2018): 1850207. http://dx.doi.org/10.1142/s0217751x1850207x.
Pełny tekst źródłaSett, Shaili, Aparna Parappurath, Navkiranjot Kaur Gill, Neha Chauhan i Arindam Ghosh. "Engineering sensitivity and spectral range of photodetection in van der Waals materials and hybrids". Nano Express 3, nr 1 (21.01.2022): 014001. http://dx.doi.org/10.1088/2632-959x/ac46b9.
Pełny tekst źródłaLai, Shen, Seongjae Byeon, Sung Kyu Jang, Juho Lee, Byoung Hun Lee, Jin-Hong Park, Yong-Hoon Kim i Sungjoo Lee. "HfO2/HfS2 hybrid heterostructure fabricated via controllable chemical conversion of two-dimensional HfS2". Nanoscale 10, nr 39 (2018): 18758–66. http://dx.doi.org/10.1039/c8nr06020g.
Pełny tekst źródłaHu, Zhao, Hongyang Zhao, Zhenxiang Cheng, Jianxu Ding, Han Gao, Yibo Han, Shengao Wang i in. "van der Waals force layered multiferroic hybrid perovskite (CH3NH3)2CuCl4 single crystals". Physical Chemistry Chemical Physics 22, nr 7 (2020): 4235–39. http://dx.doi.org/10.1039/c9cp05976h.
Pełny tekst źródłaCorrea, Julián, Pedro Orellana i Mónica Pacheco. "Optoelectronic Properties of Van Der Waals Hybrid Structures: Fullerenes on Graphene Nanoribbons". Nanomaterials 7, nr 3 (20.03.2017): 69. http://dx.doi.org/10.3390/nano7030069.
Pełny tekst źródłaRoy, Kallol, Tanweer Ahmed, Harshit Dubey, T. Phanindra Sai, Ranjit Kashid, Shruti Maliakal, Kimberly Hsieh, Saquib Shamim i Arindam Ghosh. "Number-Resolved Single-Photon Detection with Ultralow Noise van der Waals Hybrid". Advanced Materials 30, nr 2 (22.11.2017): 1704412. http://dx.doi.org/10.1002/adma.201704412.
Pełny tekst źródłaYou, Lu, Fucai Liu, Hongsen Li, Yuzhong Hu, Shuang Zhou, Lei Chang, Yang Zhou i in. "In-Plane Ferroelectricity in Thin Flakes of Van der Waals Hybrid Perovskite". Advanced Materials 30, nr 51 (17.10.2018): 1803249. http://dx.doi.org/10.1002/adma.201803249.
Pełny tekst źródłaRosul, Md Golam, Doeon Lee, David H. Olson, Naiming Liu, Xiaoming Wang, Patrick E. Hopkins, Kyusang Lee i Mona Zebarjadi. "Thermionic transport across gold-graphene-WSe2 van der Waals heterostructures". Science Advances 5, nr 11 (listopad 2019): eaax7827. http://dx.doi.org/10.1126/sciadv.aax7827.
Pełny tekst źródłaFerjani, Hela, Youssef Ben Smida i Yarub Al-Douri. "First-Principles Calculations to Investigate the Effect of Van der Waals Interactions on the Crystal and Electronic Structures of Tin-Based 0D Hybrid Perovskites". Inorganics 10, nr 10 (26.09.2022): 155. http://dx.doi.org/10.3390/inorganics10100155.
Pełny tekst źródłaZhou, Congcong, Xiaodan Li i Taotao Hu. "Structural and Electronic Properties of Heterostructures Composed of Antimonene and Monolayer MoS2". Nanomaterials 10, nr 12 (27.11.2020): 2358. http://dx.doi.org/10.3390/nano10122358.
Pełny tekst źródłaTang, Qianying, Fang Zhong, Qing Li, Jialu Weng, Junzhe Li, Hangyu Lu, Haitao Wu i in. "Infrared Photodetection from 2D/3D van der Waals Heterostructures". Nanomaterials 13, nr 7 (24.03.2023): 1169. http://dx.doi.org/10.3390/nano13071169.
Pełny tekst źródłaDizon, Joseph B., i Erin R. Johnson. "van der Waals potential energy surfaces from the exchange-hole dipole moment dispersion model". Canadian Journal of Chemistry 94, nr 12 (grudzień 2016): 1049–56. http://dx.doi.org/10.1139/cjc-2016-0215.
Pełny tekst źródłaYu, Xianbo, Guangyu Zhao, Canlong Wu, Huihuang Huang, Chao Liu, Xiaojie Shen, Ming Wang, Xiaoming Bai i Naiqing Zhang. "Constructing anion vacancy-rich MoSSe/G van der Waals heterostructures for high-performance Mg–Li hybrid-ion batteries". Journal of Materials Chemistry A 9, nr 40 (2021): 23276–85. http://dx.doi.org/10.1039/d1ta07787b.
Pełny tekst źródłaGao, Xu, Yanqing Shen, Yanyan Ma, Shengyao Wu i Zhongxiang Zhou. "ZnO/g-GeC van der Waals heterostructure: novel photocatalyst for small molecule splitting". Journal of Materials Chemistry C 7, nr 16 (2019): 4791–99. http://dx.doi.org/10.1039/c9tc00423h.
Pełny tekst źródłaLaref, Slimane, Bin Wang, Xin Gao i Takashi Gojobori. "Computational Studies of Auto-Active van der Waals Interaction Molecules on Ultra-Thin Black-Phosphorus Film". Molecules 28, nr 2 (9.01.2023): 681. http://dx.doi.org/10.3390/molecules28020681.
Pełny tekst źródłaHu, Yunsheng, Yihua Bai, Qing Zhang i Yuanjie Yang. "Electrically controlled molecular fingerprint retrieval with van der Waals metasurface". Applied Physics Letters 121, nr 14 (3.10.2022): 141701. http://dx.doi.org/10.1063/5.0111940.
Pełny tekst źródłaShim, Hyewon, Yunjeong Hwang, Sung Gu Kang i Naechul Shin. "Orientation-Dependent Conversion of VLS-Grown Lead Iodide Nanowires into Organic-Inorganic Hybrid Perovskites". Nanomaterials 11, nr 1 (16.01.2021): 223. http://dx.doi.org/10.3390/nano11010223.
Pełny tekst źródłaHajian, Hodjat, Ivan D. Rukhlenko, George W. Hanson i Ekmel Ozbay. "Hybrid surface plasmon polaritons in graphene coupled anisotropic van der Waals material waveguides". Journal of Physics D: Applied Physics 54, nr 45 (23.08.2021): 455102. http://dx.doi.org/10.1088/1361-6463/ac1bd5.
Pełny tekst źródłaJiao, Yang, Elsebeth Schröder i Per Hyldgaard. "Extent of Fock-exchange mixing for a hybrid van der Waals density functional?" Journal of Chemical Physics 148, nr 19 (21.05.2018): 194115. http://dx.doi.org/10.1063/1.5012870.
Pełny tekst źródłaJariwala, Deep, Sarah L. Howell, Kan-Sheng Chen, Junmo Kang, Vinod K. Sangwan, Stephen A. Filippone, Riccardo Turrisi, Tobin J. Marks, Lincoln J. Lauhon i Mark C. Hersam. "Hybrid, Gate-Tunable, van der Waals p–n Heterojunctions from Pentacene and MoS2". Nano Letters 16, nr 1 (18.12.2015): 497–503. http://dx.doi.org/10.1021/acs.nanolett.5b04141.
Pełny tekst źródłaChen, Zhizhong, Yiping Wang, Xin Sun, Yuwei Guo, Yang Hu, Esther Wertz, Xi Wang, Hanwei Gao, Toh-Ming Lu i Jian Shi. "Van Der Waals Hybrid Perovskite of High Optical Quality by Chemical Vapor Deposition". Advanced Optical Materials 5, nr 21 (25.08.2017): 1700373. http://dx.doi.org/10.1002/adom.201700373.
Pełny tekst źródła