Gotowa bibliografia na temat „Van der Waals Hybrid”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Van der Waals Hybrid”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Van der Waals Hybrid"
Wang, Haizhen, Jiaqi Ma i Dehui Li. "Two-Dimensional Hybrid Perovskite-Based van der Waals Heterostructures". Journal of Physical Chemistry Letters 12, nr 34 (20.08.2021): 8178–87. http://dx.doi.org/10.1021/acs.jpclett.1c02290.
Pełny tekst źródłaIdrees, M., H. U. Din, R. Ali, G. Rehman, T. Hussain, C. V. Nguyen, Iftikhar Ahmad i B. Amin. "Optoelectronic and solar cell applications of Janus monolayers and their van der Waals heterostructures". Physical Chemistry Chemical Physics 21, nr 34 (2019): 18612–21. http://dx.doi.org/10.1039/c9cp02648g.
Pełny tekst źródłaMondal, Chiranjit, Sourabh Kumar i Biswarup Pathak. "Topologically protected hybrid states in graphene–stanene–graphene heterojunctions". Journal of Materials Chemistry C 6, nr 8 (2018): 1920–25. http://dx.doi.org/10.1039/c7tc05212j.
Pełny tekst źródłaShukla, Vivekanand, Yang Jiao, Carl M. Frostenson i Per Hyldgaard. "vdW-DF-ahcx: a range-separated van der Waals density functional hybrid". Journal of Physics: Condensed Matter 34, nr 2 (1.11.2021): 025902. http://dx.doi.org/10.1088/1361-648x/ac2ad2.
Pełny tekst źródłaZheng, Zhikun, Xianghui Zhang, Christof Neumann, Daniel Emmrich, Andreas Winter, Henning Vieker, Wei Liu, Marga Lensen, Armin Gölzhäuser i Andrey Turchanin. "Hybrid van der Waals heterostructures of zero-dimensional and two-dimensional materials". Nanoscale 7, nr 32 (2015): 13393–97. http://dx.doi.org/10.1039/c5nr03475b.
Pełny tekst źródłaAlam, Qaisar, S. Muhammad, M. Idrees, Nguyen V. Hieu, Nguyen T. T. Binh, C. Nguyen i Bin Amin. "First-principles study of the electronic structures and optical and photocatalytic performances of van der Waals heterostructures of SiS, P and SiC monolayers". RSC Advances 11, nr 24 (2021): 14263–68. http://dx.doi.org/10.1039/d0ra10808a.
Pełny tekst źródłaPierucci, Debora, Aymen Mahmoudi, Mathieu Silly, Federico Bisti, Fabrice Oehler, Gilles Patriarche, Frédéric Bonell i in. "Evidence for highly p-type doping and type II band alignment in large scale monolayer WSe2/Se-terminated GaAs heterojunction grown by molecular beam epitaxy". Nanoscale 14, nr 15 (2022): 5859–68. http://dx.doi.org/10.1039/d2nr00458e.
Pełny tekst źródłaZhang, Wei, i Lifa Zhang. "Electric field tunable band-gap crossover in black(blue) phosphorus/g-ZnO van der Waals heterostructures". RSC Advances 7, nr 55 (2017): 34584–90. http://dx.doi.org/10.1039/c7ra06097a.
Pełny tekst źródłaSun, Cuicui, i Meili Qi. "Hybrid van der Waals heterojunction based on two-dimensional materials". Journal of Physics: Conference Series 2109, nr 1 (1.11.2021): 012012. http://dx.doi.org/10.1088/1742-6596/2109/1/012012.
Pełny tekst źródłaOrgiu, Emanuele. "(Invited) Hybrid Van Der Waals Heterostructures: From Fundamentals to Applications". ECS Meeting Abstracts MA2021-01, nr 12 (30.05.2021): 592. http://dx.doi.org/10.1149/ma2021-0112592mtgabs.
Pełny tekst źródłaRozprawy doktorskie na temat "Van der Waals Hybrid"
Zheng, Zhikun, Xianghui Zhang, Christof Neumann, Daniel Emmrich, Andreas Winter, Henning Vieker, Wei Liu, Marga Lensen, Armin Gölzhäuser i Andrey Turchanin. "Hybrid van der Waals heterostructures of zero-dimensional and two-dimensional materials". Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-188567.
Pełny tekst źródłaGerber, Iann. "Description des forces de van der Waals dans le cadre de la théorie de la fonctionnelle de la densité par un traitement explicite des interactions de longueportée". Phd thesis, Université Henri Poincaré - Nancy I, 2005. http://tel.archives-ouvertes.fr/tel-00011397.
Pełny tekst źródłaRichard, Sébastien. "Silices hybrides organisées par auto-assemblage de précurseurs polyfonctionnels". Montpellier 2, 2007. http://www.theses.fr/2007MON20175.
Pełny tekst źródłaThe synthesis of silylated precursors with self-assembly properties in order to create structured, silsesquioxane hybrid silicas by hydrolysis-polycondensation, is described in this report. First, a tri-silylated triphenylene model is shown. Two ester precursors have been synthesized, one bearing three propyl chains, the other bearing three undecyl chains. Synthesis and analysis of resultant materials is described. Acid catalysis in water/DMSO or water/THF gave the best results. Secondly, a tetra-silylated tetraphenylporphyrin was synthesized. This precursor bears ureas that creates intermolecular hydrogen bonds and propyl chains. The hydrolysis-condensation under basic conditions gave a structured material which was proved by X-rays diffraction. Nanostructures could be seen by transmission electron microscopy. The last model is a long alkyl chain bearing a polysilylated head at one side. Two molecules were synthesized, one with a decyl chain, the other with an octadecyl chain. These precursors assembled in biphasic, octane/water conditions, to give sheets and plates. The process depends on the catalyst and the precursor. The longest alkyl chain in acid catalysis gave the best results
Bezzi, Luca. "Materiali 2D van der Waals". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020.
Znajdź pełny tekst źródłaBoddison-Chouinard, Justin. "Fabricating van der Waals Heterostructures". Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/38511.
Pełny tekst źródłaTiller, Andrew R. "Spectra of Van der Waals complexes". Thesis, University of Cambridge, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.333415.
Pełny tekst źródłaMauro, Diego. "Electronic properties of Van der Waals heterostructures". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/10565/.
Pełny tekst źródłaKlein, Andreas. "Energietransferprozesse in matrixisolierten van-der-Waals-Komplexen". [S.l. : s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=962344761.
Pełny tekst źródłaOdeyemi, Tinuade A. "Numerical Modelling of van der Waals Fluids". Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/22661.
Pełny tekst źródłaMarsden, Alexander J. "Van der Waals epitaxy in graphene heterostructures". Thesis, University of Warwick, 2015. http://wrap.warwick.ac.uk/77193/.
Pełny tekst źródłaKsiążki na temat "Van der Waals Hybrid"
Roy, Kallol. Optoelectronic Properties of Graphene-Based van der Waals Hybrids. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59627-9.
Pełny tekst źródłaParsegian, V. Adrian. Van der Waals forces. New York: Cambridge University Press, 2005.
Znajdź pełny tekst źródłaHolwill, Matthew. Nanomechanics in van der Waals Heterostructures. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18529-9.
Pełny tekst źródła1926-, Rowlinson J. S., i I︠A︡velov B. E, red. Van der Waals and molecular science. Oxford: Clarendon Press, 1996.
Znajdź pełny tekst źródłaL, Neal Brian, Lenhoff Abraham M i United States. National Aeronautics and Space Administration., red. Van der Waals interactions involving proteins. New York: Biophysical Society, 1996.
Znajdź pełny tekst źródłaKipnis, Aleksandr I͡Akovlevich. Van der Waals and molecular sciences. Oxford: Clarendon Press, 1996.
Znajdź pełny tekst źródłaSily Van-der-Vaalʹsa. Moskva: "Nauka," Glav. red. fiziko-matematicheskoĭ lit-ry, 1988.
Znajdź pełny tekst źródłaHalberstadt, Nadine, i Kenneth C. Janda, red. Dynamics of Polyatomic Van der Waals Complexes. New York, NY: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-8009-2.
Pełny tekst źródłaNATO Advanced Research Workshop on Dynamics of Polyatomic Van der Waals Complexes (1989 Castéra-Verduzan, France). Dynamics of polyatomic Van der Waals complexes. New York: Plenum Press, 1990.
Znajdź pełny tekst źródłaM, Smirnov B. Cluster ions and Van der Waals molecules. Philadelphia: Gordon and Breach Science Publishers, 1992.
Znajdź pełny tekst źródłaCzęści książek na temat "Van der Waals Hybrid"
Roy, Kallol. "Review: Optoelectronic Response and van der Waals Materials". W Optoelectronic Properties of Graphene-Based van der Waals Hybrids, 37–77. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59627-9_3.
Pełny tekst źródłaRoy, Kallol. "Introduction". W Optoelectronic Properties of Graphene-Based van der Waals Hybrids, 1–11. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59627-9_1.
Pełny tekst źródłaRoy, Kallol. "Number Resolved Single Photon Detection". W Optoelectronic Properties of Graphene-Based van der Waals Hybrids, 207–28. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59627-9_10.
Pełny tekst źródłaRoy, Kallol. "Various Graphene, MoS$$_{{2}}$$ Devices and Room Temperature Operations". W Optoelectronic Properties of Graphene-Based van der Waals Hybrids, 229–36. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59627-9_11.
Pełny tekst źródłaRoy, Kallol. "Conclusion and Outlook". W Optoelectronic Properties of Graphene-Based van der Waals Hybrids, 237–45. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59627-9_12.
Pełny tekst źródłaRoy, Kallol. "Review: Electronic Band Structure and Interface Properties". W Optoelectronic Properties of Graphene-Based van der Waals Hybrids, 13–36. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59627-9_2.
Pełny tekst źródłaRoy, Kallol. "Experimental Techniques, Instruments, and Cryostat". W Optoelectronic Properties of Graphene-Based van der Waals Hybrids, 79–121. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59627-9_4.
Pełny tekst źródłaRoy, Kallol. "Material and Heterostructure Interface Characterization". W Optoelectronic Properties of Graphene-Based van der Waals Hybrids, 123–39. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59627-9_5.
Pełny tekst źródłaRoy, Kallol. "Photoresponse in Graphene-on-MoS$$_2$$ Heterostructures". W Optoelectronic Properties of Graphene-Based van der Waals Hybrids, 141–56. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59627-9_6.
Pełny tekst źródłaRoy, Kallol. "Switching Operation with Graphene-on-MoS$$_2$$ Heterostructures". W Optoelectronic Properties of Graphene-Based van der Waals Hybrids, 157–70. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59627-9_7.
Pełny tekst źródłaStreszczenia konferencji na temat "Van der Waals Hybrid"
Mooshammer, Fabian, Philipp Merkl, Simon Ovesen, Samuel Brem, Anna Girnghuber, Kai-Qiang Lin, Marlene Liebich i in. "Twist-Tailoring Hybrid Excitons In Van Der Waals Homobilayers". W 2021 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). IEEE, 2021. http://dx.doi.org/10.1109/cleo/europe-eqec52157.2021.9542072.
Pełny tekst źródłaYong, C. K., P. Merkl, M. Liebich, I. Hofmeister, G. Berghäuser, E. Malic i R. Huber. "Tailoring interlayer exciton-phonon hybridization in van der Waals heterostructures". W CLEO: QELS_Fundamental Science. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_qels.2022.ftu5b.5.
Pełny tekst źródłaDushaq, Ghada, Juan Esteban Villegas, Bruna Paredes, Srinivasa Reddy Tamalampudi i Mahmoud Rasras. "Four-Waveguide Crossing Functions Utilizing Anisotropic Van der Waals 2D GeAs". W CLEO: Science and Innovations. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/cleo_si.2023.stu4n.6.
Pełny tekst źródłaAthira, K. M., B. R. Bhagat i Alpa Dashora. "Tuning of electronic and magnetic properties in 2D van der Waals hybrid ferromagnet (Fe3GeTe2/Co3GeTe2)". W NATIONAL CONFERENCE ON PHYSICS AND CHEMISTRY OF MATERIALS: NCPCM2020. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0060879.
Pełny tekst źródłaBonetti, Daniel R. F., Gesiel Rios Lopes, Alexandre C. B. Delbem, Paulo S. L. Souza, Kalinka C. Branco i Gonzalo Travieso. "Comparing Parallel Algorithms for Van der Waals Energy with Cell-List Technique for Protein Structure Prediction". W XVII Workshop em Desempenho de Sistemas Computacionais e de Comunicação. Sociedade Brasileira de Computação - SBC, 2018. http://dx.doi.org/10.5753/wperformance.2018.3322.
Pełny tekst źródłaTittl, Andreas. "Merging bound states in the continuum and van der Waals materials for enhanced hybrid light-matter coupling". W Smart Photonic and Optoelectronic Integrated Circuits 2023, redaktorzy Sailing He i Laurent Vivien. SPIE, 2023. http://dx.doi.org/10.1117/12.2647132.
Pełny tekst źródłaLuo, Yunqiu Kelly. "Electrical control of opto-valleytronic spin and charge injections in monolayer MoS2/graphene hybrid van der Waals systems (Conference Presentation)". W Spintronics XII, redaktorzy Henri-Jean M. Drouhin, Jean-Eric Wegrowe i Manijeh Razeghi. SPIE, 2019. http://dx.doi.org/10.1117/12.2527721.
Pełny tekst źródłaBelardinelli, Pierpaolo, Abhilash Chandrashekar, Farbod Alijani i Stefano Lenci. "Non-Smooth Dynamics of Tapping Mode Atomic Force Microscopy". W ASME 2022 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/detc2022-88005.
Pełny tekst źródłaRafati, Jacob, Mohsen Asghari i Sachin Goyal. "Effects of DNA Encapsulation on Buckling Instability of Carbon Nanotube Based on Nonlocal Elasticity Theory". W ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/detc2014-34430.
Pełny tekst źródłaCAPOZZIELLO, S., V. F. CARDONE, S. CARLONI i A. TROISI. "VAN DER WAALS QUINTESSENCE". W Proceedings of the International Conference. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702999_0038.
Pełny tekst źródłaRaporty organizacyjne na temat "Van der Waals Hybrid"
Klots, C. E. (Physics and chemistry of van der Waals particles). Office of Scientific and Technical Information (OSTI), październik 1990. http://dx.doi.org/10.2172/6608231.
Pełny tekst źródłaMak, Kin Fai. Understanding Topological Pseudospin Transport in Van Der Waals' Materials. Office of Scientific and Technical Information (OSTI), maj 2021. http://dx.doi.org/10.2172/1782672.
Pełny tekst źródłaKim, Philip. Nano Electronics on Atomically Controlled van der Waals Quantum Heterostructures. Fort Belvoir, VA: Defense Technical Information Center, marzec 2015. http://dx.doi.org/10.21236/ada616377.
Pełny tekst źródłaSandler, S. I. The generalized van der Waals theory of pure fluids and mixtures. Office of Scientific and Technical Information (OSTI), czerwiec 1990. http://dx.doi.org/10.2172/6382645.
Pełny tekst źródłaSandler, S. I. (The generalized van der Waals theory of pure fluids and mixtures). Office of Scientific and Technical Information (OSTI), wrzesień 1989. http://dx.doi.org/10.2172/5610422.
Pełny tekst źródłaO'Hara, D. J. Molecular Beam Epitaxy and High-Pressure Studies of van der Waals Magnets. Office of Scientific and Technical Information (OSTI), sierpień 2019. http://dx.doi.org/10.2172/1562380.
Pełny tekst źródłaMenezes, W. J. C., i M. B. Knickelbein. Metal cluster-rare gas van der Waals complexes: Microscopic models of physisorption. Office of Scientific and Technical Information (OSTI), marzec 1994. http://dx.doi.org/10.2172/10132910.
Pełny tekst źródłaGwo, Dz-Hung. Tunable far infrared laser spectroscopy of van der Waals bonds: Ar-NH sub 3. Office of Scientific and Technical Information (OSTI), listopad 1989. http://dx.doi.org/10.2172/7188608.
Pełny tekst źródłaFrench, Roger H., Nicole F. Steinmetz i Yingfang Ma. Long Range van der Waals - London Dispersion Interactions For Biomolecular and Inorganic Nanoscale Assembly. Office of Scientific and Technical Information (OSTI), marzec 2018. http://dx.doi.org/10.2172/1431216.
Pełny tekst źródłaBusarow, K. L. Tunable far infrared laser spectroscopy of Van der Waals molecules in a planar supersonic jet expansion. Office of Scientific and Technical Information (OSTI), grudzień 1990. http://dx.doi.org/10.2172/5610416.
Pełny tekst źródła