Rozprawy doktorskie na temat „Van der Waals Heterojunction”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych rozpraw doktorskich naukowych na temat „Van der Waals Heterojunction”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj rozprawy doktorskie z różnych dziedzin i twórz odpowiednie bibliografie.
Lee, Choong hee. "Synthesis and Properties of Van der Waals-bonded Semiconductor Heterojunctions with Gallium Nitride". The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1534727788993068.
Pełny tekst źródłaBezzi, Luca. "Materiali 2D van der Waals". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020.
Znajdź pełny tekst źródłaBoddison-Chouinard, Justin. "Fabricating van der Waals Heterostructures". Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/38511.
Pełny tekst źródłaTiller, Andrew R. "Spectra of Van der Waals complexes". Thesis, University of Cambridge, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.333415.
Pełny tekst źródłaMauro, Diego. "Electronic properties of Van der Waals heterostructures". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/10565/.
Pełny tekst źródłaKlein, Andreas. "Energietransferprozesse in matrixisolierten van-der-Waals-Komplexen". [S.l. : s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=962344761.
Pełny tekst źródłaOdeyemi, Tinuade A. "Numerical Modelling of van der Waals Fluids". Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/22661.
Pełny tekst źródłaMarsden, Alexander J. "Van der Waals epitaxy in graphene heterostructures". Thesis, University of Warwick, 2015. http://wrap.warwick.ac.uk/77193/.
Pełny tekst źródłaConnelly, James Patrick. "Microwave studies of Van der Waals complexes". Thesis, University of Oxford, 1993. http://ora.ox.ac.uk/objects/uuid:3865eb1d-d288-44c9-8d42-84f7ff2c0608.
Pełny tekst źródłaWright, Nicholas J. "Bound states of Van der Waals trimers". Thesis, Durham University, 1998. http://etheses.dur.ac.uk/5048/.
Pełny tekst źródłaBryan, Robert. "Theoretical studies of Van der Waals clusters". Thesis, Durham University, 1997. http://etheses.dur.ac.uk/4712/.
Pełny tekst źródłaTulegenov, Akyl S. "SIMPER method for van der Waals complexes". Thesis, University of Nottingham, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.431329.
Pełny tekst źródłaMcDowell, Sean Alistair Courtney. "Theoretical studies of Van der Waals molecules". Thesis, University of Cambridge, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.259733.
Pełny tekst źródłaLe, Sueur Catherine Ruth. "Induction effects in Van der Waals complexes". Thesis, University of Cambridge, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.385523.
Pełny tekst źródłaWillberg, Dean Michael Zewail Ahmed H. "Picosecond spectroscopy of van der Waals clusters /". Diss., Pasadena, Calif. : California Institute of Technology, 1994. http://resolver.caltech.edu/CaltechETD:etd-04042008-110156.
Pełny tekst źródłaColumberg, Gieri. "Mikrowellen-Spektroskopie T-förmiger Van der Waals Komplexe /". [S.l.] : [s.n.], 1996. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=11636.
Pełny tekst źródłaCoy, Diaz Horacio. "Preparation and Characterization of Van der Waals Heterostructures". Scholar Commons, 2016. http://scholarcommons.usf.edu/etd/6212.
Pełny tekst źródłaLawrence, Stuart John. "High-resolution spectroscopy of van der Waals molecules". Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318824.
Pełny tekst źródłaKettley, J. C. "Van der Waals complexes of large aromatic molecules". Thesis, University of Nottingham, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.371128.
Pełny tekst źródłaAlthorpe, Stuart C. "Bound state calculations for van der Waals dimers". Thesis, University of Cambridge, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.319937.
Pełny tekst źródłaMa, Qiong Ph D. Massachusetts Institute of Technology. "Optoelectronics of graphene-based Van der Waals heterostructures". Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/104523.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references.
Research on van der Waals (vdW) materials (homo- or hetero-) is a rapidly emerging field in condensed matter physics. They are layered structures with strong chemical bonding within layers and relatively weak van der Waals force to combine layers together. This unique layer-bylayer nature makes it easy to exfoliate layers out and at the same time to re-assemble in arbitrary sequences with different combinations. The versatility, flexibility, and relatively low cost of production make the scientific community enthusiastic about their future. In this thesis, I investigate the fundamental physical processes of light-matter interactions in these layered structures, including graphene, boron nitride, transition metal dichalcogenides and heterostructures formed from these materials. My research involves state-of-the-art nanoscale fabrication and microscale photocurrent spectroscopy and imaging. In Chapter 1, 1 will briefly discuss basic physical properties of the vdW materials involved in this thesis and introduce the main nanofabrication and measurement techniques. Chapter 2-4 are about hot electron dynamics and electron-phonon coupling in intrinsic graphene systems, among which Chapter 2 is focusing on the generation mechanism of the photocurrent at the p-n interface, which is demonstrated to have a photothermoelectric origin. This indicates a weak electron-phonon coupling strength in graphene. Chapter 3 is a direct experimental follow-up of the work in Chapter 2 and reveals the dominant electron-phonon coupling mechanism at different temperature and doping regimes. In Chapter 4, I present the observation of anomalous geometric photocurrent patterns in various devices at the charge neutral point. The spatial pattern can be understood as a local photo-generated current near edges being collected by remote electrodes. The anomalous behavior as functions of change density and temperature indicates an interesting regime of energy and charge dynamics. In Chapter 5 and 6, 1 will show the photoresponse of graphene-BN heterostuctures. In graphene-BN stack directly on SiO₂, we observed strong photo-induced doping phenomenon, which can be understood as charge transfer from graphene across BN and eventually trapped at the interface between BN and SiO₂. By inserting another layer of graphene between BN and SiO₂ , we can measure an electrical current after photoexcitation due to such charge transfer. We further studied the competition between this vertical charge transfer and in-plane carrier-carrier scattering in different regimes. In Chapter 7, I will briefly summarize collaborated work with Prof. Dimitri Basov's group on near-field imaging of surface polariton in two-dimensional materials. This technique provides a complementary tool to examine the intriguing light-matter interaction (for large momentum excitations) in low-dimensional materials. Chapter 8 is the outlook, from my own point of view, what more can be done following this thesis.
by Qiong Ma.
Ph. D.
Waage, Magnus Heskestad. "Radiative corrections to van der Waals interaction in fluids". Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for fysikk, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-18872.
Pełny tekst źródłaDelRio, Frank William. "Van der Waals and capillary adhesion in microelectromechanical systems". Diss., Connect to online resource, 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3239374.
Pełny tekst źródłaPeet, Andrew Charles. "Vibrational predissociation of Van der Waals complexes containing ethylene". Thesis, University of Cambridge, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.329168.
Pełny tekst źródłaHowson, Joanna M. M. "Obtaining potential energy surfaces of Van der Waals molecules". Thesis, Durham University, 1999. http://etheses.dur.ac.uk/4488/.
Pełny tekst źródłaSanz-Garcia, Aranzazu. "Modelling the dispersion energy for Van der Waals complexes". Thesis, University of Nottingham, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.252013.
Pełny tekst źródłaMusgrave, Adam. "Electronic spectroscopy of Van der Waals clusters and complexes". Thesis, University of Nottingham, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.445684.
Pełny tekst źródłaKhestanova, Ekaterina. "Van der Waals heterostructures : fabrication, mechanical and electronic properties". Thesis, University of Manchester, 2018. https://www.research.manchester.ac.uk/portal/en/theses/van-der-waals-heterostructures-fabrication-mechanical-and-electronic-properties(047ce24b-7a58-4192-845d-54c7506f179f).html.
Pełny tekst źródłaSchofield, Robert Christopher. "Raman studies of 2-dimensional van der Waals materials". Thesis, University of Sheffield, 2018. http://etheses.whiterose.ac.uk/21313/.
Pełny tekst źródłaDavid, Lamuel Abraham. "Van der Waals sheets for rechargeable metal-ion batteries". Diss., Kansas State University, 2015. http://hdl.handle.net/2097/32796.
Pełny tekst źródłaDepartment of Mechanical and Nuclear Engineering
Gurpreet Singh
The inevitable depletion of fossil fuels and related environmental issues has led to exploration of alternative energy sources and storage technologies. Among various energy storage technologies, rechargeable metal-ion batteries (MIB) are at the forefront. One dominant factor affecting the performance of MIB is the choice of electrode material. This thesis reports synthesis of paper like electrodes composed for three representative layered materials (van der Waals sheets) namely reduced graphene oxide (rGO), molybdenum disulfide (MoS₂) and hexagonal boron nitride (BN) and their use as a flexible negative electrode for Li and Na-ion batteries. Additionally, layered or sandwiched structures of vdW sheets with precursor-derived ceramics (PDCs) were explored as high C-rate electrode materials. Electrochemical performance of rGO paper electrodes depended upon its reduction temperature, with maximum Li charge capacity of 325 mAh.g⁻¹ observed for specimen annealed at 900°C. However, a sharp decline in Na charge capacity was noted for rGO annealed above 500 °C. More importantly, annealing of GO in NH₃ at 500 °C showed negligible cyclability for Na-ions while there was improvement in electrode's Li-ion cycling performance. This is due to increased level of ordering in graphene sheets and decreased interlayer spacing with increasing annealing temperatures in Ar or reduction at moderate temperatures in NH₃. Further enhancement in rGO electrodes was achieved by interfacing exfoliated MoS₂ with rGO in 8:2 wt. ratios. Such papers showed good Na cycling ability with charge capacity of approx. 225.mAh.g⁻¹ and coulombic efficiency reaching 99%. Composite paper electrode of rGO and silicon oxycarbide SiOC (a type of PDC) was tested as high power-high energy anode material. Owing to this unique structure, the SiOC/rGO composite electrode exhibited stable Li-ion charge capacity of 543.mAh.g⁻¹ at 2400 mA.g⁻¹ with nearly 100% average cycling efficiency. Further, mechanical characterization of composite papers revealed difference in fracture mechanism between rGO and 60SiOC composite freestanding paper. This work demonstrates the first high power density silicon based PDC/rGO composite with high cyclic stability. Composite paper electrodes of exfoliated MoS₂ sheets and silicon carbonitride (another type of PDC material) were prepared by chemical interfacing of MoS₂ with polysilazane followed by pyrolysis . Microscopic and spectroscopic techniques confirmed ceramization of polymer to ceramic phase on surfaces on MoS₂. The electrode showed classical three-phase behavior characteristics of a conversion reaction. Excellent C-rate performance and Li capacity of 530 mAh.g⁻¹ which is approximately 3 times higher than bulk MoS₂ was observed. Composite papers of BN sheets with SiCN (SiCN/BN) showed improved electrical conductivity, high-temperature oxidation resistance (at 1000 °C), and high electrochemical activity (~517 mAh g⁻¹ at 100 mA g⁻¹) toward Li-ions generally not observed in SiCN or B-doped SiCN. Chemical characterization of the composite suggests increased free-carbon content in the SiCN phase, which may have exceeded the percolation limit, leading to the improved conductivity and Li-reversible capacity. The novel approach to synthesis of van der Waals sheets and its PDC composites along with battery cyclic performance testing offers a starting point to further explore the cyclic performance of other van der Waals sheets functionalized with various other PDC chemistries.
Gée, Christelle. "Reactions chimiques isolees sur agregats de van der waals". Paris 11, 1997. http://www.theses.fr/1997PA112092.
Pełny tekst źródłaYu, Geliang. "Transport properties of graphene based van der Waals heterostructures". Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/transport-properties-of-graphene-based-van-der-waals-heterostructures(5cbb782f-4d49-42da-a05e-15b26606e263).html.
Pełny tekst źródłaGani, Yohanes Satrio. "Electronic Properties of Two-Dimensional Van Der Waals Systems". W&M ScholarWorks, 2019. https://scholarworks.wm.edu/etd/1563899012.
Pełny tekst źródłaTomarken, Spencer Louis. "Thermodynamic and tunneling measurements of van der Waals heterostructures". Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/123567.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references (pages 201-212).
In certain electronic systems, strong Coulomb interactions between electrons can favor novel electronic phases that are difficult to anticipate theoretically. Accessing fundamental quantities such as the density of states in these platforms is crucial to their analysis. In this thesis, I explore the application of two measurement techniques towards this goal: capacitance measurements that probe the thermodynamic ground state of an electronic system and planar tunneling measurements that access its quasiparticle excitation spectrum. Both techniques were applied to van der Waals materials, a class of crystals composed of layered atomic sheets with weak interplane bonding which permits the isolation of single and few-layer sheets that can be manually assembled into heterostructures. Capacitance measurements were performed on a material system commonly known as magic-angle twisted bilayer graphene (MATBG).
When two monolayers of graphene, a single sheet of graphite, are stacked on top of one another with a relative twist between their crystal axes, the resultant band structure is substantially modified from the cases of both monolayer graphene and Bernal-stacked (non-twisted) bilayer graphene. At certain magic angles, the low energy bands become extremely flat, quenching the electronic kinetic energy and allowing strong electron-electron interactions to become relevant. Exotic insulating and superconducting phases have been observed using conventional transport measurements. By accessing the thermodynamic density of states of MATBG, we estimate its low energy bandwidth, Fermi velocity, and interaction-driven energy gaps. Time-domain planar tunneling was performed on a heterostructure that consisted of monolayer graphene and hexagonal boron nitride (serving as the dielectric and tunnel barrier) sandwiched between a graphite tunneling probe and metal gate.
Tunneling currents were induced by applying a sudden voltage pulse across the full parallel plate structure. The lack of in-plane charge motion allowed access to the tunneling density of states even when the heterostructure was electrically insulating in the quantum Hall regime. These measurements represent the first application of time-domain planar tunneling to the van der Waals class of materials, an important step in extending the technique to new material platforms.
by Spencer Louis Tomarken.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Physics
Henck, Hugo. "Hétérostructures de van der Waals à base de Nitrure". Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS319/document.
Pełny tekst źródłaThis thesis is at the interface between the study of nitride based compounds and the emerging structures formed by atomically thin bi-dimensional (2D) materials. This work consists in the study of the hybridization of the properties of large band gap materials from the nitride family and the mechanical, electronic and optical performances of layered materials, recently isolated at the monolayer level, highly considered due to their possible applications in electronics devices and fundamental research. In particular, a study of electronics and structural properties of stacked layered materials and 2D/3D interfaces have been realised with microscopic and spectroscopic means such as Raman, photoemission and absorption spectroscopy.This work is firstly focused on the structural and electronic properties of hexagonal boron nitride (h-BN), insulating layered material with exotic optical properties, essential in in the purpose of integrating these 2D materials with disclosed performances. Using graphene as an ideal substrate in order to enable the measure of insulating h-BN during photoemission experiments, a study of structural defects has been realized. Consequently, the first direct observation of multilayer h-BN band structure is presented in this manuscript. On the other hand, a different approach consisting on integrating bi-dimensional materials directly on functional bulk materials has been studied. This 2D/3D heterostructure composed of naturally N-doped molybdenum disulphide and intentionally P-doped gallium nitride using magnesium has been characterised. A charge transfer from GaN to MoS2 has been observed suggesting a fine-tuning of the electronic properties of such structure by the choice of materials.In this work present the full band alignment diagrams of the studied structure allowing a better understanding of these emerging systems
Scheele, Iris. "Hochauflösende Infrarot-Spektroskopie an schwach gebundenen Van-der-Waals-Systemen". [S.l.] : [s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=963558668.
Pełny tekst źródłaQuayle, Christopher John Kendrick. "Alignment effects in the photodissociation of van der Waals molecules". Thesis, University of Oxford, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.357431.
Pełny tekst źródłaLuo, Yuanhong Ph D. Massachusetts Institute of Technology. "Twist angle physics in graphene based van der Waals heterostructures". Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/119050.
Pełny tekst źródłaThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged student-submitted from PDF version of thesis.
Includes bibliographical references (pages 121-131).
In this thesis, I present my experimental work on twisted bilayer graphene, a van der Waals heterostructure consisting of two graphene sheets stack on top of each other. In particular, the twist angle is a new degree of freedom in this system, and has an important effect in the determination of its transport properties. The work presented will explore the twist-dependent physics in two regimes: the large twist angle and small twist angle regimes. In the large-twist angle limit, the two sheets have little interlayer interactions and are strongly decoupled, allowing us to put independent quantum Hall edge modes in both layers. We study the edge state interactions in this system, culminating in the formation of a quantum spin Hall state in twisted bilayer graphene. In the small twist angle limit, interlayer interactions are strong and the layers are strongly hybridized. Additionally, a new long-range moiré phenomenon emerges, and we study the effects of the interplay between moiré physics and interlayer interactions on its transport properties.
by Yuanhong Luo.
Ph. D.
Yankowitz, Matthew Abraham. "Local Probe Spectroscopy of Two-Dimensional van der Waals Heterostructures". Diss., The University of Arizona, 2015. http://hdl.handle.net/10150/594649.
Pełny tekst źródłaMatope, Stephen. "Application of Van-der-Waals forces in micro-material handling". Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/71608.
Pełny tekst źródłaThis doctoral dissertation focuses on the application of Van-der-Waals’ forces in micromaterial handling. A micro-material handling system consists of four main elements, which include: the micro-gripper, the micro-workpart, the picking up position and the placement position. The scientific theoretical frameworks of Van-der-Waals’ forces, presented by Van der Waals, Hamaker, London, Lifshitz, Israelachvilli, Parsegian, Rumpf and Rabinovich, are employed in exploring the extent to which these forces could be applied in a micromanufacturing situation. Engineering theoretical frameworks presented by Fearing, Bohringer, Sitti, Feddema, Arai and Fukuda, are employed in order to provide an in-depth synthesis of the application of Van-der-Waals’ forces in micro-material handling. An empirical or pragmatic methodology was adopted in the research. The Electron Beam Evaporation (e-beam) method was used in generating interactive surfaces of uniform surface roughness values. E-beam depositions of copper, aluminum and silver on silicon substrates were developed. The deposition rates were in the range of 0.6 – 1.2 Angstrom/s, at an average vacuum pressure of 2 x 10-6 mbar. The topographies were analysed and characterised using an Atomic Force Microscope and the corresponding rms surface roughness values were obtained. The Rumpf-Rabinovich equation, which gives the relationship of the exerted Van-der-Waals’ forces and the rms surface roughness values, is used to numerically model the results. In the final synthesis it is observed that the e-beam depositions of copper are generally suited for the pick-up position. Aluminum is suited for the micro-gripper and silver is suited for the placement position in an optimised micro-material handling system. Another Atomic Force Microscope was used in order to validate the numerically modelled results of the exerted Van- der-Waals’ forces. The aim was to measure the magnitude of Vander- Waals’ forces exerted by the e-beam depositions and to evaluate their applicability in micro-material handling operations. The measurements proved that Van-der-Waals’ forces exerted by the samples could be used for micro-material handling purposes on condition that they exceeded the weight of the micro-part being handled. Three fundamental parameters, ie: material type, geometrical configuration and surface topography were used to develop strategies of manipulation of micro-materials by Van-der- Waals’ forces. The first strategy was based on the material type variation of the interactive surfaces in a micro-material handling operation. This strategy hinged on the fact that materials have different Hamaker coefficients, which resulted in them experiencing a specific Van-der- Waals’ forces’ intensity during handling. The second strategy utilised variation in the geometrical configuration of the interacting surfaces. The guiding principle in this case was that, the larger the contact area was, the greater the exerted Van-der-Waals’ forces would be In the analytical modelling of Van-der-Waals’ forces with reference to geometrical configuration, a flat surface was found to exert more force than other configurations. The application of the design, for purposes of manufacturing and assembling (DFMA) criteria, also proved that flat interactive surfaces have high design efficiency. The third strategy was based on surface roughness. The rougher the topography of a given surface was, the lesser the Van-der-Waals’ forces exerted were. It was synthesised that in order for a pick-transfer-place cycle to be realised, the root-mean-square (rms) interactive surface roughness values of the micro-part (including the picking position, the micro-gripper, and the placement position) should decrease successively. Hybrid strategies were also identified in this research in order to deal with some complex cases. The hybrids combined at least two of the aforementioned strategies.
Economides, George. "Investigations of open-shell open-shell Van der Waals complexes". Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:e27330e0-2eaa-4181-af30-70e8b7a3a692.
Pełny tekst źródłaDhont, Guillaume. "Spectroscopie Renner-Teller dans des complexes van der Waals chargés". Université de Marne-la-Vallée, 2003. http://www.theses.fr/2003MARN0175.
Pełny tekst źródłaBENSLIMANE, MOHAMED. "Collisions agregats de van der waals surface aux energies thermiques". Palaiseau, Ecole polytechnique, 1995. http://www.theses.fr/1995EPXX0041.
Pełny tekst źródłaSchwarz, Stefan. "Microcavity-enhanced light-matter interaction in van der Waals heterostructures". Thesis, University of Sheffield, 2016. http://etheses.whiterose.ac.uk/12278/.
Pełny tekst źródłaLonij, Vincent P. A. "ATOM OPTICS, CORE ELECTRONS, AND THE VAN DER WAALS POTENTIAL". Diss., The University of Arizona, 2011. http://hdl.handle.net/10150/145119.
Pełny tekst źródłaHermann, Jan. "Towards unified density-functional model of van der Waals interactions". Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/18706.
Pełny tekst źródłaThe ubiquitous long-range van der Waals interactions play a central role in nearly all biological and modern synthetic materials. Yet the most widely used theoretical method for calculating material properties, the density functional theory (DFT) in semilocal approximation, largely neglects these interactions, which motivated the development of many different vdW models. The work in this thesis paves way towards a unified vdW model that combines best elements from the different classes of the vdW models. To this end, we developed a unified theoretical framework based on the range-separated adiabatic-connection fluctuation--dissipation theorem that encompasses most existing vdW models. We analyze the MBD correlated wave function on the prototypical case of π–π interactions in supramolecular complexes and find that these interactions are largely driven by delocalized collective charge fluctuations. To identify a balanced short-range density functional to accompany the long-range vdW model, we present a comprehensive study of the interplay between the short-range and long-range energy contributions in eight semilocal functionals and three vdW models on a wide range of systems. The binding-energy profiles of many of the DFT+vdW combinations differ both quantitatively and qualitatively, and some of the qualitative differences are independent of the choice of the vdW model. Finally, we investigate the performance of the Vydrov—Van Voorhis polarizability functional across the periodic table, identify systematic underestimation of the polarizabilities and vdW C₆ coefficients for s- and d-block elements, and develop an orbital-dependent generalization of this functional to resolve the issue.
Ramilowski, Jordan Aleksander. "Dynamics of van der Waals Clusters: Theoretical and Computational Studies". DigitalCommons@USU, 2010. https://digitalcommons.usu.edu/etd/719.
Pełny tekst źródłaMacKenzie, Valerie Jane. "Photophysics and spectroscopy of tropolone and its van der Waals complexes". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape7/PQDD_0011/NQ37898.pdf.
Pełny tekst źródłaPerreault, John D. "Using Atom Optics to Measure van der Waals Atom-Surface Interactions". Diss., Tucson, Arizona : University of Arizona, 2005. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu%5Fetd%5F1317%5F1%5Fm.pdf&type=application/pdf.
Pełny tekst źródłaThornley, Alice E. "Quantum mechanics of Van der Waals complexes : rare gas-hydrocarbon systems". Thesis, Durham University, 1994. http://etheses.dur.ac.uk/5139/.
Pełny tekst źródła