Gotowa bibliografia na temat „Vaccination – Immunologie”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Vaccination – Immunologie”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Vaccination – Immunologie"
Bazin, Hervé. "L’histoire des vaccinations. 2e partie : des vaccins pastoriens aux vaccins modernes". Bulletin de la Société Française d'Histoire de la Médecine et des Sciences Vétérinaires 13, nr 1 (2013): 45–63. https://doi.org/10.3406/bhsv.2013.1146.
Pełny tekst źródłaOlsen, S. C., i C. Johnson. "Immune Responses and Safety after Dart or Booster Vaccination of Bison with Brucella abortus Strain RB51". Clinical and Vaccine Immunology 19, nr 5 (29.03.2012): 642–48. http://dx.doi.org/10.1128/cvi.00033-12.
Pełny tekst źródłaRidolfi, Irene, Luca Lo Sardo, Stefania Nicola, Richard Borrelli, Ludovica Comola, Valentina Marmora, Iuliana Badiu, Federica Corradi, Maria Carmen Rita Azzolina i Luisa Brussino. "MAURIVAX: A Vaccination Campaign Project in a Hospital Environment for Patients Affected by Autoimmune Diseases and Adult Primary Immunodeficiencies". Vaccines 11, nr 10 (11.10.2023): 1579. http://dx.doi.org/10.3390/vaccines11101579.
Pełny tekst źródłaRosenblat, Todd L., Mark G. Frattini, Suzanne M. Chanel, Tao Dao, Yvette Bernal, Joseph G. Jurcic, Rhong Zhang i in. "Phase II Trial of WT1 Analog Peptide Vaccine in Patients with Acute Myeloid Leukemia (AML) in Complete Remission (CR)". Blood 120, nr 21 (16.11.2012): 3624. http://dx.doi.org/10.1182/blood.v120.21.3624.3624.
Pełny tekst źródłaGates, Dana M., Steven A. Cohen, Kelly Orr i Aisling R. Caffrey. "Pharmacist-Administered Influenza Vaccination in Children and Corresponding Regulations". Vaccines 10, nr 9 (28.08.2022): 1410. http://dx.doi.org/10.3390/vaccines10091410.
Pełny tekst źródłaBuckwalter, Matthew, i Pramod Srivastava. "Form of antigen dictates immunity: Irradiated cell vs. whole cell lysate vaccination (48.16)". Journal of Immunology 178, nr 1_Supplement (1.04.2007): S77. http://dx.doi.org/10.4049/jimmunol.178.supp.48.16.
Pełny tekst źródłaHuppke, L., C. Gebhardt, L. Grümme, J. Lichtnekert, D. Singh, F. Ullrich, S. Wolfrum, A. Skapenko i H. Schulze-Koops. "AB1326 DIFFERENCES IN ADVERSE EVENTS EXPERIENCED BY INDIVIDUALS WITH INFLAMMATORY RHEUMATIC DISEASES AND HEALTHY INDIVIDUALS AFTER SARS-CoV-2 VACCINATION". Annals of the Rheumatic Diseases 82, Suppl 1 (30.05.2023): 1892.1–1892. http://dx.doi.org/10.1136/annrheumdis-2023-eular.497.
Pełny tekst źródłaWu, Yufei, Huanjie Li, Yangyang Wang, Ping Huang, Yihui Xu, Mingjie Xu, Qianqian Zhao i in. "Opinion Polls and Antibody Response Dynamics of Vaccination with COVID-19 Booster Vaccines". Vaccines 10, nr 5 (20.04.2022): 647. http://dx.doi.org/10.3390/vaccines10050647.
Pełny tekst źródłaRobinson, Stacie J., Michelle M. Barbieri, Samantha Murphy, Jason D. Baker, Albert L. Harting, Meggan E. Craft i Charles L. Littnan. "Model recommendations meet management reality: implementation and evaluation of a network-informed vaccination effort for endangered Hawaiian monk seals". Proceedings of the Royal Society B: Biological Sciences 285, nr 1870 (10.01.2018): 20171899. http://dx.doi.org/10.1098/rspb.2017.1899.
Pełny tekst źródłaHanson, Lars Å., i Sven Arne Silfverdal. "Vaccination immunology". Scandinavian Journal of Infectious Diseases 40, nr 9 (styczeń 2008): 696–701. http://dx.doi.org/10.1080/00365540802029573.
Pełny tekst źródłaRozprawy doktorskie na temat "Vaccination – Immunologie"
Baey, Camille. "Etude de l’efficacité et des mécanismes de la présentation croisée d’antigènes cellulaires tumoraux intacts par les cellules dendritiques". Thesis, Paris 5, 2013. http://www.theses.fr/2013PA05T054/document.
Pełny tekst źródłaDendritic cells (DC) are specialized in the capture, processing and antigen presentation. They have developed a special antigen presentation mechanism, known as cross-presentation, allowing them to internalize exogenous antigens, to digest and associate them to MHC class I molecules for presentation to CD8+ T lymphocytes. The cross-presentation is essential to the presentation of antigens that are not directly synthesized by the DC (self antigens, tumor antigens, microorganisms that don’t infect DC) and therefore to establish anti-infectious or anti-tumoral CD8+ T cell responses. His study is therefore essential for vaccination and immunotherapy involving a presentation by the DC. Our team showed that, like apoptotic cells, living cells are an efficient antigen source for cross-presentation by DC in vitro and in vivo. We have shown that immunization of mice with DCs that have captured material from living cells could protect effectively against a B16 melanoma challenge in a prophylactic model. During my PhD, I have shown that immunization was also very effective in a therapeutic model. Surprisingly, the protection and the CD8+ T cell response obtained using living cells as antigen source, are better than those obtained with apoptotic cells. DCs cultured with live or apoptotic antigen donor cells, expressed equivalent levels of costimulatory molecules. In contrast, DCs cultured with apoptotic cells secrete more IL- 10, giving them a tolerogenic phenotype. Furthermore, we have also shown that tumor antigens were better preserved within living cells than apoptotic cells, and the amount of MHC-I/peptide complexes at the surface of DC after culture with living cells was greater than after culture with apoptotic cells. In a second part of my thesis, I tried to characterize the receptors and mechanisms involved in the transfer of antigen from living cells to DCs. I have shown that this transfer is not dependent on exosomes transfer, nor on "cross-dressing". However, it is initiated after a close contact with the DC that seems to depend at least in part in scavenger receptors (SR) and calreticulin. The microscopy images obtained suggest the passage of large molecules in a structure, which may be similar to annular junctions (Annular Gap Junctions). Indeed, we observe the passage of connexin 43 (Cx3) and cellular material in a native conformation (GFP 70 kDa protein) from the living cell that partially colocalize with the early endosome marker EEA-1 in DCs. However, the use of an shRNA specific for Cx43 indicates that the cross-presentation does not require its expression. Our results suggest the existence of a mechanism of intercellular communication allowing the passage of large antigen, which could then be processed by DCs
Beignon, Anne-Sophie. "Exploitation du système immunitaire de la peau pour l'administration non-invasive de vaccins". Université Louis Pasteur (Strasbourg) (1971-2008), 2002. http://www.theses.fr/2002STR13068.
Pełny tekst źródłaLeite, Pereira Adrien. "Découverte de marqueurs immunologiques permettant d’évaluer l’innocuité des nouveaux vaccins". Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS177.
Pełny tekst źródłaVaccination is often not well regarded by the general population. To reassure this latest, it will be interesting to set up an in vitro platform predicting the vaccine safety. The aim of this thesis is to develop the beginnings of this platform. The principle is simple, to get inflammatory signature of a candidate vaccine to evaluate it safety. For that, this signature will be compared with those obtained by vaccine currently on the market or by pathogens.During this thesis, we selected a list of biomarkers that can be used to determinate the inflammatory signature of a vaccine. To obtain this list, we used different inflammatory models (HIV and TLR ligands) and the mass cytometry. Then, we had developed in vitro test to obtain inflammatory signatures induced by Vaccinia Virus or Modified Vaccinia virus Ankara, each used to eradicate the smallpox. We identified specific inflammatory signatures for each virus, both in healthy individuals and HIV-infected humans.The continuation of these studies, by obtaining a large number of signatures coming from vaccines on the market or induced by pathogens, could make it possible to finalize the setting up of this platform. Indeed, the obtaining of the latter would make it possible to obtain reference signatures which could predict the dangerousness of a vaccine
Mahé, Brice. "Etude de la vaccination par la voie transcutanée : modèles expérimentaux et études cliniques". Paris 6, 2007. http://www.theses.fr/2007PA066470.
Pełny tekst źródłaDupuy-Papin, Catherine. "Vaccination anti-papillomavirus : réponse systémique et vaginale contre la protéine majeure de capside". Tours, 1998. http://www.theses.fr/1998TOUR3813.
Pełny tekst źródłaGross, David Alexandre. "Identification et optimisation d'antigènes tumoraux en vue d'une vaccination antitumorale". Paris 6, 2001. http://www.theses.fr/2001PA066432.
Pełny tekst źródłaÇobanoglu, Özmen. "Contribution de la sénescence cellulaire à la vaccination anti-tumorale chez l’individu âgé". Electronic Thesis or Diss., Université de Lille (2022-....), 2023. http://www.theses.fr/2023ULILS083.
Pełny tekst źródłaAge-related decline of immunity reduces vaccine efficacy in the elderly. Cellular senescence - a hallmark of aging - is a physiological process characterized by a state of chronic low-grade inflammation. Senescent cells accumulate with age and are resistant to cell death as a result of increased Bcl-2 expression. Senescent cells show an enhanced pro-inflammatory phenotype, as a part of senescence associated secretory phenotype (SASP) which contributes to inflammation and other detrimental effects. Pre-existing senescent cells cause many aging-related disorders and therapeutic strategies aiming at selectively eliminating these cells have recently gained attention.The potential role of pre-existing senescent cells in vaccine efficacy in the aged populations has not yet been reported to our knowledge. This can be achieved through different approaches such as the use of senolytic drugs that selectively target and eliminate these cells. Using the specific Bcl-2 family inhibitor senolytic ABT-263 (Navitoclax), we investigated the effects of senolysis on the immune response induced by vaccination. To this end, aged mice (22-months) and young adult mice (2 months) were treated with Navitoclax before immunization and few days later mice were immunized with the antigen Ovalbumin (OVA) plus adjuvant (Quil-A and CpG ODN). Antibody production was quantified by ELISA and the T cell response was quantified by measuring the production of interferon gamma after antigen re-stimulation. To study the efficacy of the immune response post-vaccination, mice were engrafted with OVA-expressing B16 melanoma cells and melanoma outgrowth was measured.ABT-263 treatment depleted senescent cells in the spleen. This was evidenced by immunohistochemistry using antibodies against p16 (a marker of senescence) and Bcl-2 and by quantifying beta-galactosidase activity, another marker of senescence. Depletion of senescent cells also led to a reduced production of systemic SASP-related factors in blood. In the same line, splenocytes isolated from Navitoclax-treated aged mice produced less inflammatory cytokines in response to LPS compared to controls. Having validated the efficacy of Navitoclax, we then turned to analyze the consequences of senescent cell's removal on the immune, anti-tumor response. Navitoclax treatment slightly reduced antigen-specific antibody production. Both IgM and IgG were affected. In contrast, T cells from Navitoclax-treated aged mice produce more IFN-gamma compared to controls. A similar effect was observed in young adult mice. Strikingly, depletion of pre-existing senescent cells before vaccination abrogated the protective effect of the vaccine on tumor outgrowth in aged mice, and to a lower extent, in young adult mice. We conclude that senolysis influences the quality of the immune responses post-vaccination and strongly affects the anti-tumor response in vaccinated aged mice
Deutscher, Mathieu Meyer Gilles. "Infection expérimentale par le virus respiratoire syncytial bovin étude des interactions entre la vaccination et l'évolution du virus /". [S.l.] : [s.n.], 2007. http://oatao.univ-toulouse.fr/1798/1/celdran_1798.pdf.
Pełny tekst źródłaHaddad, Nadia. "Vaccination du chien contre la rage : fabrication et contrôles d'un vaccin à virus inactivé préparé sur encéphale d'agneau : étude comparée de l'activité de deux vaccins sur des chiens du terrain en Tunisie". Lyon 1, 1985. http://www.theses.fr/1985LYO10122.
Pełny tekst źródłaSagodira, Serge. "Vaccination génétique par voie nasale contre la cryptosporidiose : étude de la réponse immunitaire chez la souris et de la protection dans un modèle caprin". Tours, 1998. http://www.theses.fr/1998TOUR3808.
Pełny tekst źródłaKsiążki na temat "Vaccination – Immunologie"
Symposium in Immunology (7th 1997?). Symposium in Immunology VII: Vaccination. Berlin: Springer, 1998.
Znajdź pełny tekst źródła1956-, Zhang Jingwu, i Cohen Irun R, red. T-cell vaccination. New York: Nova Biomedical Books, 2008.
Znajdź pełny tekst źródłaE, Kaufmann S. H., red. Novel vaccination strategies. Weinheim: Wiley-VCH, 2004.
Znajdź pełny tekst źródłaAda, G. L. Vaccination: The facts, the fears, the future. St. Leonards, N.S.W: Allen & Unwin, 2000.
Znajdź pełny tekst źródłaJ, Raus, red. T cell vaccination and autoimmune disease. New York: Springer-Verlag, 1995.
Znajdź pełny tekst źródłaFoged, Camilla. Subunit vaccine delivery. Redaktorzy Rades Thomas author, Perrie Yvonne author i Hook Sarah author. New York: Springer, 2015.
Znajdź pełny tekst źródłaAlejandro, Schudel, Lombard Michel i International Office of Epizootics, red. Control of infectious animal diseases by vaccination: Buenos Aires, Argentina, 13-16 April, 2005 ; proceedings of a conference organized by the World Organisation for Animal Health-OIE. Basel: Karger, 2004.
Znajdź pełny tekst źródłaAlejandro, Schudel, i Lombard Michel, red. Control of infectious animal diseases by vaccination: Buenos Aires, Argentina, 13-16 April, 2005. Basel: Karger, 2005.
Znajdź pełny tekst źródłaInternational, Meeting on the History of Vaccinology (1995 Marnes-la Coquette Hauts-de-Seine). Vaccinia, vaccination, vaccinology: Jenner, Pasteur, and their successors. Paris: Elsevier, 1996.
Znajdź pełny tekst źródłaAronova, E. A. Immunitet: Teorii︠a︡, filosofii︠a︡ i ėksperiment : ocherki iz istorii immunologii XX veka. Moskva: KomKn., 2006.
Znajdź pełny tekst źródłaCzęści książek na temat "Vaccination – Immunologie"
Catchpole, Brian, i Harm HogenEsch. "Vaccination". W Day's Veterinary Immunology, 217–33. Wyd. 3. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003310969-13.
Pełny tekst źródłaKlimov, Vladimir V. "Vaccination". W From Basic to Clinical Immunology, 291–304. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-03323-1_8.
Pełny tekst źródłaJaspreet, Dhami, Wang Vivian, Wang Ziwei, Pham Brittney, Yabuno Jamie i Joseph Yusin. "Vaccination". W Absolute Allergy and Immunology Board Review, 307–15. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12867-7_30.
Pełny tekst źródłaDurrant, L. G., I. Spendlove i R. A. Robins. "Anti-idiotypic vaccination". W Cancer Immunology, 171–80. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-017-0963-7_10.
Pełny tekst źródłaRijkers, G. T. "17 Vaccins en vaccinatie". W Immunologie, 361–76. Houten: Bohn Stafleu van Loghum, 2009. http://dx.doi.org/10.1007/978-90-313-6528-9_17.
Pełny tekst źródłaRijkers, G. T. "Vaccins en vaccinatie". W Leerboek immunologie, 421–39. Houten: Bohn Stafleu van Loghum, 2016. http://dx.doi.org/10.1007/978-90-368-0258-1_17.
Pełny tekst źródłaRijkers, G. T., i F. G. M. Kroese. "Vaccins en vaccinatie". W Leerboek immunologie, 435–54. Houten: Bohn Stafleu van Loghum, 2023. http://dx.doi.org/10.1007/978-90-368-2817-8_16.
Pełny tekst źródłaCohen, Noah D., i Angela I. Bordin. "Principles of Vaccination". W Equine Clinical Immunology, 263–78. Chichester, UK: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119086512.ch28.
Pełny tekst źródłaSharapova, Svetlana O. "Fever After DPT Vaccination". W Pediatric Immunology, 249–54. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-21262-9_49.
Pełny tekst źródłaHuizinga, T. W. J., i L. G. Visser. "15 Vaccinatie en immunomodulatie". W Medische immunologie, 267–77. Houten: Bohn Stafleu van Loghum, 2016. http://dx.doi.org/10.1007/978-90-368-1613-7_15.
Pełny tekst źródłaStreszczenia konferencji na temat "Vaccination – Immunologie"
Telgen, Maaike C., M. G. J. Brusse-Keizer, G. T. Rijkers, J. van der Palen, H. A. M. Kerstjens, M. G. R. Hendrix i P. D. L. P. M. van der Valk. "Immunologic Responses In COPD Patients: The Annual Influenza Vaccination". W American Thoracic Society 2012 International Conference, May 18-23, 2012 • San Francisco, California. American Thoracic Society, 2012. http://dx.doi.org/10.1164/ajrccm-conference.2012.185.1_meetingabstracts.a2270.
Pełny tekst źródłaPamar, P., K. Krolikowski, D. Rudym, M. Lesko, L. F. Angel, L. N. Segal i J. G. Natalini. "Immunologic Effects of SARS-CoV-2 Vaccination in Lung Transplant Recipients". W American Thoracic Society 2023 International Conference, May 19-24, 2023 - Washington, DC. American Thoracic Society, 2023. http://dx.doi.org/10.1164/ajrccm-conference.2023.207.1_meetingabstracts.a6044.
Pełny tekst źródłaGarrido, Greta, Brett Schrand, Agata Levay, Ailem Rabasa, Anthony Ferrantella, Diane Da Silva, Francesca D’Eramo i in. "Abstract B26: Prorapeutic vaccination against shared antigens induced in future tumors". W Abstracts: AACR Special Conference on Tumor Immunology and Immunotherapy; November 17-20, 2019; Boston, MA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/2326-6074.tumimm19-b26.
Pełny tekst źródłaBrody, Joshua D. "Abstract IA32: Improving checkpoint blockade for lymphoma with Flt3L-primed in situ vaccination". W Abstracts: AACR Special Conference on Tumor Immunology and Immunotherapy; October 1-4, 2017; Boston, MA. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/2326-6074.tumimm17-ia32.
Pełny tekst źródłaKim, Ha, Keejong Hong, Byung Cheol Ahn, Jung Sun Yum i Hyewon Youn. "Abstract B25: Visualization of immune response to Hepatitis B vaccination by in vivo mouse imaging". W Abstracts: AACR Special Conference on Tumor Immunology and Immunotherapy; October 20-23, 2016; Boston, MA. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/2326-6074.tumimm16-b25.
Pełny tekst źródłaCarpanese, D., I. Montagner, A. Dalla Pietà, V. Rossi, A. Penna, G. Zuccolotto, G. Pasut, A. Grigoletto i A. Rosato. "P09.03 Hyaluronic acid as a new immunologic adjuvant in cancer: design of effective preventive and therapeutic vaccination strategies for HER2/neu-positive breast tumors". W iTOC8 – the 8th Leading International Cancer Immunotherapy Conference in Europe, 8–9 October 2021, Virtual Conference. BMJ Publishing Group Ltd, 2021. http://dx.doi.org/10.1136/jitc-2021-itoc8.53.
Pełny tekst źródłaMarron, Thomas, Nina Bhardwaj, Elizabeth Crowley, Tibor Keler, Thomas Davis, Andres Salazar i Joshua Brody. "Abstract IA03: Turning a tumor into a vaccine factory: In situ vaccination for low-grade lymphoma". W Abstracts: AACR Special Conference: Tumor Immunology and Immunotherapy: A New Chapter; December 1-4, 2014; Orlando, FL. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/2326-6074.tumimm14-ia03.
Pełny tekst źródłaWitt, Kristina, Maarten Alexander Ligtenberg, Laura Conti, Stefania Lanzardo, Roberto Ruiu, Helena Tufvesson-Stiller, Jeanette Ostling i in. "Abstract A77: Cripto-1 vaccination elicits protective immune response to metastatic breast cancer and breast cancer stem cells". W Abstracts: AACR Special Conference on Tumor Immunology and Immunotherapy; October 1-4, 2017; Boston, MA. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/2326-6074.tumimm17-a77.
Pełny tekst źródłaSchreiber, Taylor H., Louis Gonzalez, Dietlinde Wolf, Maria Bodero i Eckhard R. Podack. "Abstract A38: T cell costimulation by TNFRSF4, TNFRSF18, and TNFRSF25 in the context of vaccination." W Abstracts: AACR Special Conference on Tumor Immunology: Multidisciplinary Science Driving Basic and Clinical Advances; December 2-5, 2012; Miami, FL. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.tumimm2012-a38.
Pełny tekst źródłaAndersen, Brian M., G. Elizabeth Pluhar, Charles E. Seiler, Zhengming Xiong, Michelle R. Goulart, Matthew Gerry O'Sullivan, Matthew A. Hunt, Charles E. Schiaffo, David M. Ferguson i John R. Ohlfest. "Abstract B32: Preclinical testing of three immune adjuvants in vaccination therapy for invasive canine meningioma." W Abstracts: AACR Special Conference on Tumor Immunology: Multidisciplinary Science Driving Basic and Clinical Advances; December 2-5, 2012; Miami, FL. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.tumimm2012-b32.
Pełny tekst źródła