Gotowa bibliografia na temat „Vaccination – Immunologie”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Vaccination – Immunologie”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Vaccination – Immunologie"

1

Bazin, Hervé. "L’histoire des vaccinations. 2e partie : des vaccins pastoriens aux vaccins modernes". Bulletin de la Société Française d'Histoire de la Médecine et des Sciences Vétérinaires 13, nr 1 (2013): 45–63. https://doi.org/10.3406/bhsv.2013.1146.

Pełny tekst źródła
Streszczenie:
Cette présentation concerne la mise en route des vaccins à virulence atténuée par Pasteur et son équipe, donnant l’espoir d’obtenir un vaccin pour chaque maladie infectieuse. De nombreuses techniques ont été mises en oeuvre : vaccins chimiques, sérothérapie, séro-vaccination, vaccins tués (microbes) ou inactivés (virus), auto-vaccins, anatoxines, irradiation de parasites… pour les vaccins de première génération. La naissance de la biologie moléculaire et du génie génétique en microbiologie et en immunologie a conduit à une explosion de vaccins OGM dont les premiers exemples sont le vaccin hépatite B (production d’un ou plusieurs antigènes d’un agent pathogène dans un système d’expression : cellules eucaryotes, levures…), le vaccin vaccine-rage (expression d’antigènes dans un vecteur…) mais aussi, des vaccins à propriétés nouvelles d’emploi comme le premier vaccin à marqueur, appelé DIVA pour « Différenciation des animaux infectés de ceux vaccinés ».
Style APA, Harvard, Vancouver, ISO itp.
2

Olsen, S. C., i C. Johnson. "Immune Responses and Safety after Dart or Booster Vaccination of Bison with Brucella abortus Strain RB51". Clinical and Vaccine Immunology 19, nr 5 (29.03.2012): 642–48. http://dx.doi.org/10.1128/cvi.00033-12.

Pełny tekst źródła
Streszczenie:
ABSTRACTOne alternative for management of brucellosis in Yellowstone National Park bison (Bison bison) is vaccination of calves and yearlings. AlthoughBrucella abortusstrain RB51 vaccination protects bison against experimental challenge, the effect of booster vaccinations was unknown. This study characterized immunologic responses after dart or booster vaccination of bison withBrucella abortusstrain RB51. In two studies, 8- to 10-month-old female bison were inoculated with saline (n= 14), hand vaccinated with 1.1 × 1010to 2.0 × 1010CFU of RB51 (n= 21), or dart vaccinated with 1.8 × 1010CFU of RB51 (n= 7). A subgroup of hand vaccinates in study 1 was randomly selected for booster vaccination 15 months later with 2.2 × 1010CFU of RB51. Compared to single vaccinates, booster-vaccinated bison had greater serologic responses to RB51. However, there was a trend for antigen-specific proliferative responses of peripheral blood mononuclear cells (PBMC) from booster vaccinates to be reduced compared to responses of PBMC from single vaccinates. PBMC from booster vaccinates tended to have greater gamma interferon (IFN-γ) production than those from single vaccinates. In general, dart vaccination with RB51 induced immunologic responses similar to those of hand vaccination. All vaccinates (single hand, dart, or booster) demonstrated greater (P< 0.05) immunologic responses at various times after vaccination than nonvaccinated bison. Booster vaccination with RB51 in early gestation did not induce abortion or fetal infection. Our data suggest that booster vaccination does not induce strong anamnestic responses. However, phenotypic data on resistance to experimental challenge are required to fully assess the effect of booster vaccination on protective immunity.
Style APA, Harvard, Vancouver, ISO itp.
3

Ridolfi, Irene, Luca Lo Sardo, Stefania Nicola, Richard Borrelli, Ludovica Comola, Valentina Marmora, Iuliana Badiu, Federica Corradi, Maria Carmen Rita Azzolina i Luisa Brussino. "MAURIVAX: A Vaccination Campaign Project in a Hospital Environment for Patients Affected by Autoimmune Diseases and Adult Primary Immunodeficiencies". Vaccines 11, nr 10 (11.10.2023): 1579. http://dx.doi.org/10.3390/vaccines11101579.

Pełny tekst źródła
Streszczenie:
Background: Patients with autoimmune diseases (ADs) and primary immunodeficiencies (PIDs) are characterized by an increased risk of noninvasive and widespread infections as they are considered frail patients. In addition, many flares of the underlying disease are reported after routine vaccinations. To date, the vaccination rate in these two populations is suboptimal. According to the latest guidelines, targeted interventions are needed, such as strengthening the network of vaccination activities. Our project aimed to propose a pilot network for carrying out the recommended vaccinations in frail patients. Methods: The Allergy and Immunology Center of the Mauriziano Hospital in Turin, Italy started the “Maurivax” project, a facilitated pathway for frail patients to administer the recommended vaccinations in the setting of a dedicated structure where they could be properly followed up. Results: From June 2022 to February 2023, 49 patients underwent a vaccination consultation: 45 of them (91.8%) were subsequently vaccinated. Among these, 36 subjects (80%) were affected by an active AD and were already in treatment with immunosuppressive therapy or about to start it. Seven patients (15.5%) had a confirmed diagnosis of PID or showed a clinical presentation that was highly suggestive of that condition. Overall, twenty-seven patients (60%) showed a high-grade immunosuppression and six (13.3%) had a low-grade immunosuppression. No patients had a disease flare within 30 days from vaccination and no severe reactions after vaccination was observed. Conclusions: Adherence and vaccination safety at our immunology hospital vaccine clinic dedicated to patients with ADs and PIDs were high. We propose an effective model for managing vaccinations in frail patients in a specialist hospital setting.
Style APA, Harvard, Vancouver, ISO itp.
4

Rosenblat, Todd L., Mark G. Frattini, Suzanne M. Chanel, Tao Dao, Yvette Bernal, Joseph G. Jurcic, Rhong Zhang i in. "Phase II Trial of WT1 Analog Peptide Vaccine in Patients with Acute Myeloid Leukemia (AML) in Complete Remission (CR)". Blood 120, nr 21 (16.11.2012): 3624. http://dx.doi.org/10.1182/blood.v120.21.3624.3624.

Pełny tekst źródła
Streszczenie:
Abstract Abstract 3624 WT1 is a transcription factor which has been implicated in leukemogenesis and has been used as a marker of minimal residual disease (MRD). We previously demonstrated the feasibility of vaccinating AML patients in CR with a multivalent WT1 peptide vaccine and inducing immune responses. In an effort to further explore the safety and efficacy of this approach, we are conducting a Phase II study in which the vaccine is administered to AML patients in first CR and who completed all planned postremission chemotherapy. Eligible patients had WT1 transcript detectable by RT-PCR. The vaccine consisted of 4 native and derived WT1 peptides administered with the immune adjuvants Montanide and GM-CSF. Patients received 6 vaccinations over 10 weeks. Early toxicity was assessed at weeks 2 and 4. Immune responses were evaluated at week 12 by CD4+ T cell proliferation, CD3+ T cell interferon-g interferon release (ELISPOT) and WT1 peptide tetramer staining. Patients who were clinically stable and without disease recurrence could continue with up to 6 more vaccinations administered approximately every month. To date, 12 patients have been accrued to the study (6-M, 6-F; median age – 66 years, range 26–73 years). Cytogenetic subtypes varied among the study patients (Favorable-3, Intermediate-5, Unfavorable-4). The median time to vaccination after achieving CR was 7.5 months (range: 3–22 months). One patient was removed early because of relapse prior to receiving the first vaccination. Four patients have received at least 6 vaccines and 2 others have completed 12 vaccinations. Eight patients are alive without evidence of disease. One of these patients has an HLA-A02 subtype and was found to have developed T cells reactive with WT1-A (native peptide) HLA tetramers following 6 vaccinations which persisted (at a lower level) until after the 12th vaccination. Three patients relapsed during vaccination (after 1, 5 and 11 vaccines) and 2 of the 3 have died. Two of the relapsed patients who had sample available for immunologic evaluation, did not develop a CD4+ response to any of the peptides tested. Two other patients discontinued vaccination because of toxicity (hypersensitivity/pain with GM-CSF administration). Both remain in CR. No episodes of anaphylaxis or generalized urticaria were observed. Neither median disease free survival nor overall survival has been reached in this small cohort of patients. These preliminary findings demonstrate that the WT1 peptide vaccine is relatively well tolerated and has immunologic activity. Trial accrual is ongoing and further follow-up is required before any beneficial effect on outcome can be determined. Disclosures: Scheinberg: Formula Pharma: WT1 Vaccine inventor, Patent held by MSKCC and Licensed to Formula Pharma, WT1 Vaccine inventor, Patent held by MSKCC and Licensed to Formula Pharma Patents & Royalties.
Style APA, Harvard, Vancouver, ISO itp.
5

Gates, Dana M., Steven A. Cohen, Kelly Orr i Aisling R. Caffrey. "Pharmacist-Administered Influenza Vaccination in Children and Corresponding Regulations". Vaccines 10, nr 9 (28.08.2022): 1410. http://dx.doi.org/10.3390/vaccines10091410.

Pełny tekst źródła
Streszczenie:
In our retrospective cohort study, we evaluated trends in pharmacist-administered pediatric influenza vaccination rates in the United States and corresponding state-level pharmacist pediatric vaccination authorization models, including minimum age requirements, vaccination protocols, and/or prescription requirements. An administrative health claims database was used to capture influenza vaccinations in children less than 18 years old with 1 year of continuous enrollment and joinpoint regression was used to assess trends. Of the 3,937,376 pediatric influenza vaccinations identified over the study period, only 3.2% were pharmacist-administered (87.7% pediatrician offices, 2.3% convenience care clinics, 0.8% emergency care, and 6.0% other locations). Pharmacist-administered pediatric influenza vaccination was more commonly observed in older children (mean age 12.65 ± 3.26 years) and increased significantly by 19.2% annually over the study period (95% confidence interval 9.2%-30.2%, p < 0.05). The Northeast, with more restrictive authorization models, represented only 2.2% (n = 2816) of all pharmacist-administered pediatric influenza vaccinations. Utilization of pharmacist-administered pediatric influenza vaccination remains low. Providing children with greater access to vaccination with less restrictions may increase overall vaccination rates. Due to the COVID-19 pandemic and the Public Readiness and Emergency Preparedness Act, pharmacists will play a major role in vaccinating children.
Style APA, Harvard, Vancouver, ISO itp.
6

Buckwalter, Matthew, i Pramod Srivastava. "Form of antigen dictates immunity: Irradiated cell vs. whole cell lysate vaccination (48.16)". Journal of Immunology 178, nr 1_Supplement (1.04.2007): S77. http://dx.doi.org/10.4049/jimmunol.178.supp.48.16.

Pełny tekst źródła
Streszczenie:
Abstract The context in which antigen is perceived by the immune system dictates the quality of the ensuing immune response, which can range from tolerance to lasting immunity. In the current report we investigated the effects of vaccinating mice with antigen in two separate contexts, namely: Irradiated cells, or whole cell lysates. Using the MethA tumor model we observed that although a single vaccination with irradiated MethA cells leads to immunity in BALB/c mice, vaccination with the same cell equivalents of whole cell lysate does not. These results were surprising in light of the substantial body of literature demonstrating the immunostimulatory effects of cell lysates. We hypothesize that although each vaccination contains the same potential antigens, due to the different context in which they are delivered, the immune system will react to them differently. To test this we analyzed multiple characteristics of the immune response following vaccination with irradiated cells or whole cell lysates including: Tumor protection, the quantity and quality of an antigen specific T cell response, stability and persistence of antigen, and the effects of multiple vaccinations. We report dramatic differences between the two immunogens at each of the aspects tested. Our data suggests that although whole cell lysates contain antigen and the same potentially immunostimulatory components as irradiated cells, vaccinating mice with irradiated tumor cells leads to a much greater T cell response and tumor protection than does vaccinating with whole cell lysates.
Style APA, Harvard, Vancouver, ISO itp.
7

Huppke, L., C. Gebhardt, L. Grümme, J. Lichtnekert, D. Singh, F. Ullrich, S. Wolfrum, A. Skapenko i H. Schulze-Koops. "AB1326 DIFFERENCES IN ADVERSE EVENTS EXPERIENCED BY INDIVIDUALS WITH INFLAMMATORY RHEUMATIC DISEASES AND HEALTHY INDIVIDUALS AFTER SARS-CoV-2 VACCINATION". Annals of the Rheumatic Diseases 82, Suppl 1 (30.05.2023): 1892.1–1892. http://dx.doi.org/10.1136/annrheumdis-2023-eular.497.

Pełny tekst źródła
Streszczenie:
BackgroundSince individuals with inflammatory rheumatic diseases (IRDs) were excluded from the SARS-CoV-2 vaccination trials (1), uncertainty on the tolerability of the vaccines in this population was high. This caused a lower willingness to be vaccinated compared to the general population. Gaining more information on vaccine reaction in this population is critical.ObjectivesThe aim of the study was to improve knowledge of the tolerability of SARS-CoV-2 vaccination in patients with IRD and to identify potential specific risks of this population by comparison with a healthy cohort.MethodsIRD patients were recruited from the outpatient clinic of the Division of Rheumatology and Clinical Immunology at the hospital of the LMU Munich. Health care workers served as healthy controls. Questionnaires were used to identify adverse effects in all study participants after each SARS-CoV-2 vaccination and to obtain information about patients’ disease and therapy. Descriptive statistics and non-parametric tests were used to discern differences between IRD patients and controls.Results235 IRD patients (60% female), mean (±SD) age 54 (±15) years, and 102 healthy individuals (67% female), mean age 48 (±16) years, were recruited between Jan 2021 and Sep 2022. Pain at the injection site and fatigue were the most common adverse events in both groups. (Table 1) Patients presented adverse events significantly less often after the first vaccination (59.6%) compared to healthy individuals (84.3%) (OR=0.274 [95% CI: 0.151-0.497]; P<0.0001). With 58.7% of patients and 78.4% of controls experiencing adverse events after the second vaccination the difference stayed significant (OR=0.391 [0.228-0.670]; P<0.001). Same goes for the third vaccination with 56.4% of patients and 69.3% of controls presenting adverse events (OR=0.573 [0.348-0.946]; P=0.029). No difference was seen when the occurrence of local effects were compared. However, systemic effects were experienced significantly less by patients compared to controls after the first (41.3% vs 59.8%) (P=0.002), second (38.7% vs 58.8%) (P<0.001) and third vaccination (39.0% vs 51.5%) (P=0.036). Younger age and female sex showed higher frequencies of adverse events in both groups. 2% of patients experienced an activation of their IRD. Serious adverse events did not occur.Table 1.Adverse events experienced after SARS-CoV-2 vaccination in patients and controlsPatientsHealthy controlsAdverse effects1. vaccination2. vaccination3. vaccination1. vaccination2. vaccination3. vaccinationn=235n=233n=218n=102n=102n=101Local reactions, % (n)Any49.8 (117)48.9 (115)47.7 (104)66·7 (68)57·8 (59)49·5 (50)Pain at the injection site46.4 (109)47.2 (110)45.0 (98)65·7 (67)55·9 (57)47·5 (48)Swelling at the injectionsite12.3 (29)9.9 (23)13.3 (29)10·8 (11)10·8 (11)9·9 (10)Redness at the injectionsite8.9 (21)7.3 (17)8.7 (19)7·8 (8)7·8 (8)6·9 (7)Systemic reactions, % (n)Any41.2 (97)38.7 (91)39.0 (85)59·8 (61)58·8 (60)51·5 (52)Fatigue29.4 (69)27 (63)28.0 (61)42·2 (43)45·1 (46)37·6 (38)Chills6.8 (16)8.2 (19)6.4 (14)12·7 (13)15·7 (16)5·9 (6)Fever5.5 (13)6.4 (15)6.0 (13)12·7 (13)16·7 (17)8·9 (9)Headache15.3 (36)12.9 (30)13.3 (29)22·5 (23)19·6 (20)21·8 (22)Nausea2.6 (6)2.1 (5)3.7 (8)2·9 (3)3·9 (4)0 (0)Muscle pain13.2 (31)12.0 (28)13.8 (30)26·5 (27)25·5 (26)22·8 (23)Joint pain6.8 (16)5.2 (12)6.4 (14)10·8 (11)11·8 (12)8·9 (9)Others5.1 (12)5.2 (12)6.0 (13)1.0 (1)3.9 (4)3.0 (3)ConclusionIRD patients are at no higher risk of experiencing adverse events than controls after SARS-CoV-2 vaccination. In fact, systemic effects seem to occur less frequently in patients compared to healthy individuals, which potentially shows an influence of IRDs or their therapies on vaccination reactions.Reference[1]Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med. 2020;383(27):2603-15.AcknowledgementsThis work was supported by the Verbundanträge ‘GAIN’ (project 8, 01GM1910C) and ‘COVIM’ (project AP8, 01KX2021), both by the Federal Ministry of Education and Research of Germany; and by the FöFoLe program of the medical faculty of the LMU Munich.We thank all physicians that helped in patient-recruitment and all participants, because without them this work would not have been possible.Disclosure of InterestsNone Declared.
Style APA, Harvard, Vancouver, ISO itp.
8

Wu, Yufei, Huanjie Li, Yangyang Wang, Ping Huang, Yihui Xu, Mingjie Xu, Qianqian Zhao i in. "Opinion Polls and Antibody Response Dynamics of Vaccination with COVID-19 Booster Vaccines". Vaccines 10, nr 5 (20.04.2022): 647. http://dx.doi.org/10.3390/vaccines10050647.

Pełny tekst źródła
Streszczenie:
As the third year of the global COVID-19 pandemic, vaccination remains the most effective tool against infections and symptomatic illness. Comprehension regarding immunity to SARS-CoV-2 is limited, and the durability of immune responses after vaccination is currently not clear. In this study, we randomly collected 395 questionnaires to analyze the current state of COVID-19 vaccination. At the same time, the serum of 16 individuals who had received two doses of the COVID-19 vaccine were collected at different times before and after the booster vaccination. We analyzed the dynamic changes of SARS-CoV-2 S-specific binding antibodies in serum and immunological indicators. By collecting public opinion surveys and analyzing variational trends of SARS-CoV-2 S-specific binding antibodies and immune indicators after COVID-19 booster vaccination, we endeavored to demonstrate the concerns affecting people’s booster vaccinations, as well as the frequency, timing, and necessity of COVID-19 booster vaccinations. The analysis of antibody results in 16 vaccinated volunteers showed that the antibody concentration decreased six months after the second dose and the protective effect of the virus was reduced. The third dose of COVID-19 vaccination is necessary to maintain the antibody concentration and the protective effect of the virus. The vaccination with the vaccine booster depends not only on the time interval but also on the initial concentration of the SARS-CoV-2 S-specific binding antibody before the booster. Our study has important implications for raising public awareness of vaccinating against SARS-CoV-2 and the necessity of COVID-19 booster vaccinations.
Style APA, Harvard, Vancouver, ISO itp.
9

Robinson, Stacie J., Michelle M. Barbieri, Samantha Murphy, Jason D. Baker, Albert L. Harting, Meggan E. Craft i Charles L. Littnan. "Model recommendations meet management reality: implementation and evaluation of a network-informed vaccination effort for endangered Hawaiian monk seals". Proceedings of the Royal Society B: Biological Sciences 285, nr 1870 (10.01.2018): 20171899. http://dx.doi.org/10.1098/rspb.2017.1899.

Pełny tekst źródła
Streszczenie:
Where disease threatens endangered wildlife populations, substantial resources are required for management actions such as vaccination. While network models provide a promising tool for identifying key spreaders and prioritizing efforts to maximize efficiency, population-scale vaccination remains rare, providing few opportunities to evaluate performance of model-informed strategies under realistic scenarios. Because the endangered Hawaiian monk seal could be heavily impacted by disease threats such as morbillivirus, we implemented a prophylactic vaccination programme. We used contact networks to prioritize vaccinating animals with high contact rates. We used dynamic network models to simulate morbillivirus outbreaks under real and idealized vaccination scenarios. We then evaluated the efficacy of model recommendations in this real-world vaccination project. We found that deviating from the model recommendations decreased the efficiency; requiring 44% more vaccinations to achieve a given decrease in outbreak size. However, we gained protection more quickly by vaccinating available animals rather than waiting to encounter priority seals. This work demonstrates the value of network models, but also makes trade-offs clear. If vaccines were limited but time was ample, vaccinating only priority animals would maximize herd protection. However, where time is the limiting factor, vaccinating additional lower-priority animals could more quickly protect the population.
Style APA, Harvard, Vancouver, ISO itp.
10

Hanson, Lars Å., i Sven Arne Silfverdal. "Vaccination immunology". Scandinavian Journal of Infectious Diseases 40, nr 9 (styczeń 2008): 696–701. http://dx.doi.org/10.1080/00365540802029573.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Vaccination – Immunologie"

1

Baey, Camille. "Etude de l’efficacité et des mécanismes de la présentation croisée d’antigènes cellulaires tumoraux intacts par les cellules dendritiques". Thesis, Paris 5, 2013. http://www.theses.fr/2013PA05T054/document.

Pełny tekst źródła
Streszczenie:
Les cellules dendritiques (DC) sont spécialisées dans la capture, l’apprêtement et la présentation des antigènes. Elles ont développé une voie spécifique de présentation, la présentation croisée, leur permettant d’internaliser des antigènes exogènes, de les digérer et de les associer aux molécules du CMH de classe I afin de les présenter aux lymphocytes T CD8+. La présentation croisée est essentielle à la présentation d’antigènes qui ne sont pas synthétisés directement dans les DC (antigènes du soi, de tumeurs, de microorganismes n’infectant pas les DC) et donc à l’établissement de réponses T CD8+ anti‐infectieuses ou anti-tumorales. Son étude est donc primordiale pour la vaccination et pour l’immunothérapie mettant en jeu une présentation par les DC. Notre équipe a montré qu’à l’instar des cellules apoptotiques, les cellules vivantes sont une source d’antigènes efficace pour la présentation croisée par les DC in vitro et in vivo. Elle a ainsi montré que l’immunisation de souris avec des DC ayant capturé du matériel provenant de cellules vivantes permettait de protéger efficacement contre une tumeur dérivée de cellules de mélanome (B16) dans un protocole de type prophylactique. Durant ma thèse, j’ai pu montrer que cette immunisation était également très efficace dans un protocole de type thérapeutique. De façon surprenante, la protection et la réponse T CD8+ obtenues en utilisant des cellules vivantes comme source d’antigènes sont meilleures que celles obtenues avec des cellules apoptotiques. Les DC cultivées avec des cellules donneuses d’antigènes, vivantes ou apoptotiques, expriment des niveaux équivalents de molécules de costimulation. En revanche, les DC cultivées avec des cellules apoptotiques sécrètent plus d’IL--‐10, leur conférant un phénotype plus tolérogène. De plus, nous avons également montré que les antigènes tumoraux étaient mieux préservés au sein des cellules vivantes que des cellules apoptotiques, et que la quantité de complexes CMH--‐I/peptide à la surface des DC après culture avec des cellules vivantes était plus importante qu’après culture avec des cellules apoptotiques. Dans une seconde partie de ma thèse, je me suis attachée à caractériser les récepteurs et mécanismes impliqués dans le transfert d’antigènes provenant de cellules vivantes aux DC. J’ai pu montrer que ce transfert ne dépend ni de la sécrétion d’exosomes, ni du « cross-dressing ». En revanche, il est initié après un contact étroit avec les DC qui semble dépendre au moins en partie des récepteurs de type scavenger (SR) et de la calréticuline. Les images obtenues en microscopie suggèrent le passage de molécules de grande taille au sein d’une structure qui pourrait s’apparenter aux jonctions annulaires (Annular Gap Junctions). En effet, nous observons le passage de connexine 43 (Cx3) et de matériel cellulaire sous une conformation native (protéine GFP de 70kDa) provenant de la cellule vivante et colocalisant partiellement avec le marqueur d’endosomes précoces EEA-1 dans la DC. Cependant, l’utilisation de shRNA spécifique de la Cx43 indique que la présentation croisée ne nécessite pas son expression. Nos résultats suggèrent donc l’existence d’un mécanisme de communication intercellulaire permettant le passage d’antigènes de grande taille, qui pourraient ensuite être apprêtés par la DC
Dendritic cells (DC) are specialized in the capture, processing and antigen presentation. They have developed a special antigen presentation mechanism, known as cross-presentation, allowing them to internalize exogenous antigens, to digest and associate them to MHC class I molecules for presentation to CD8+ T lymphocytes. The cross-presentation is essential to the presentation of antigens that are not directly synthesized by the DC (self antigens, tumor antigens, microorganisms that don’t infect DC) and therefore to establish anti-infectious or anti-tumoral CD8+ T cell responses. His study is therefore essential for vaccination and immunotherapy involving a presentation by the DC. Our team showed that, like apoptotic cells, living cells are an efficient antigen source for cross-presentation by DC in vitro and in vivo. We have shown that immunization of mice with DCs that have captured material from living cells could protect effectively against a B16 melanoma challenge in a prophylactic model. During my PhD, I have shown that immunization was also very effective in a therapeutic model. Surprisingly, the protection and the CD8+ T cell response obtained using living cells as antigen source, are better than those obtained with apoptotic cells. DCs cultured with live or apoptotic antigen donor cells, expressed equivalent levels of costimulatory molecules. In contrast, DCs cultured with apoptotic cells secrete more IL- 10, giving them a tolerogenic phenotype. Furthermore, we have also shown that tumor antigens were better preserved within living cells than apoptotic cells, and the amount of MHC-I/peptide complexes at the surface of DC after culture with living cells was greater than after culture with apoptotic cells. In a second part of my thesis, I tried to characterize the receptors and mechanisms involved in the transfer of antigen from living cells to DCs. I have shown that this transfer is not dependent on exosomes transfer, nor on "cross-dressing". However, it is initiated after a close contact with the DC that seems to depend at least in part in scavenger receptors (SR) and calreticulin. The microscopy images obtained suggest the passage of large molecules in a structure, which may be similar to annular junctions (Annular Gap Junctions). Indeed, we observe the passage of connexin 43 (Cx3) and cellular material in a native conformation (GFP 70 kDa protein) from the living cell that partially colocalize with the early endosome marker EEA-1 in DCs. However, the use of an shRNA specific for Cx43 indicates that the cross-presentation does not require its expression. Our results suggest the existence of a mechanism of intercellular communication allowing the passage of large antigen, which could then be processed by DCs
Style APA, Harvard, Vancouver, ISO itp.
2

Beignon, Anne-Sophie. "Exploitation du système immunitaire de la peau pour l'administration non-invasive de vaccins". Université Louis Pasteur (Strasbourg) (1971-2008), 2002. http://www.theses.fr/2002STR13068.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Leite, Pereira Adrien. "Découverte de marqueurs immunologiques permettant d’évaluer l’innocuité des nouveaux vaccins". Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS177.

Pełny tekst źródła
Streszczenie:
La vaccination est souvent mal perçue par la population générale. Pour rassurer cette dernière, il serait intéressant de créer une plateforme vaccinale pouvant prédire, in vitro, les risques associés à la prise d’un vaccin. L’objectif de cette thèse est de mettre au point les prémices de cette plateforme. Le principe est simple: obtenir la signature inflammatoire d’un vaccin candidat pour évaluer son innocuité. Pour cela, cette signature sera comparée à celles obtenues par des vaccins actuellement sur le marché ou induites par des pathogènes.Durant cette thèse, nous avons sélectionné une liste de biomarqueurs pouvant être utilisés pour déterminer la signature inflammatoire d’un vaccin. Pour mettre au point cette liste, nous avons utilisé différents modèles inflammatoires (VIH et ligands TLR) et la cytométrie de masse. Par la suite, nous avons mis au point des tests in vitro pour obtenir les signatures inflammatoires induites par le Vaccinia Virus ou le Modified Vaccinia virus Ankara, tous deux utilisés pour éradiquer la variole. Nous avons identifié des signatures inflammatoires spécifiques pour chacun de ces virus, à la fois chez des individus sains et chez des patients infectés par le VIH.La poursuite de ces études, par l’obtention d’un grand nombre de signatures provenant de vaccins sur le marché ou induites par des pathogènes, pourrait permettre de finaliser la mise en place de cette plateforme. En effet, l’obtention de ces dernières permettrait d’obtenir des signatures de référence qui pourraient prédire la dangerosité d’un vaccin
Vaccination is often not well regarded by the general population. To reassure this latest, it will be interesting to set up an in vitro platform predicting the vaccine safety. The aim of this thesis is to develop the beginnings of this platform. The principle is simple, to get inflammatory signature of a candidate vaccine to evaluate it safety. For that, this signature will be compared with those obtained by vaccine currently on the market or by pathogens.During this thesis, we selected a list of biomarkers that can be used to determinate the inflammatory signature of a vaccine. To obtain this list, we used different inflammatory models (HIV and TLR ligands) and the mass cytometry. Then, we had developed in vitro test to obtain inflammatory signatures induced by Vaccinia Virus or Modified Vaccinia virus Ankara, each used to eradicate the smallpox. We identified specific inflammatory signatures for each virus, both in healthy individuals and HIV-infected humans.The continuation of these studies, by obtaining a large number of signatures coming from vaccines on the market or induced by pathogens, could make it possible to finalize the setting up of this platform. Indeed, the obtaining of the latter would make it possible to obtain reference signatures which could predict the dangerousness of a vaccine
Style APA, Harvard, Vancouver, ISO itp.
4

Mahé, Brice. "Etude de la vaccination par la voie transcutanée : modèles expérimentaux et études cliniques". Paris 6, 2007. http://www.theses.fr/2007PA066470.

Pełny tekst źródła
Streszczenie:
La récente implication de DCs cutanées dans le mécanisme de présentation croisée et l’induction de réponses T CD8+ suggère que la vaccination transcutanée soit une voie adéquate favorisant les réponses immunes cellulaires. D’une part, le modèle murin nous a permis d’établir in vivo que suite à l’application transcutanée de nanoparticules (40/200 Nm) un afflux de ces nanoparticules atteignait le ganglion drainant la zone traitée. D’autre part, l’utilisation de vecteurs viraux modifiés, comme le MVA (Modified Virus Ankara), nous a permis d’établir que des immunogènes de taille plus importante (≈ 400 Nm) pouvaient pénétrer la barrière cutanée par application topique et induire des cellules T spécifiques d’antigène. Dans une étude pilot de vaccination transcutanée, cette procédure a été bien tolérée par l’ensemble des volontaires. L’immunisation transcutanée a permis d’induire à la fois des réponses cellulaires antigrippales T CD4 et CD8, alors que le groupe intramusculaire n’induit que de fortes réponses cellulaires T CD4.
Style APA, Harvard, Vancouver, ISO itp.
5

Dupuy-Papin, Catherine. "Vaccination anti-papillomavirus : réponse systémique et vaginale contre la protéine majeure de capside". Tours, 1998. http://www.theses.fr/1998TOUR3813.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Gross, David Alexandre. "Identification et optimisation d'antigènes tumoraux en vue d'une vaccination antitumorale". Paris 6, 2001. http://www.theses.fr/2001PA066432.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Çobanoglu, Özmen. "Contribution de la sénescence cellulaire à la vaccination anti-tumorale chez l’individu âgé". Electronic Thesis or Diss., Université de Lille (2022-....), 2023. http://www.theses.fr/2023ULILS083.

Pełny tekst źródła
Streszczenie:
Le déclin du système immunitaire naturellement lié à l'âge - appelé immunosénescence - contribue à la moindre efficacité des vaccins chez les personnes âgées. La sénescence cellulaire est caractérisée par une inflammation chronique de bas grade. Les cellules sénescentes s'accumulent avec l'âge et sont résistantes à la mort cellulaire, notamment du fait de l'augmentation de l'expression des membres de la famille Bcl-2. Les cellules sénescentes produisent de nombreux facteurs inflammatoires et des immunomodulateurs, ce qui contribue à l'expression de leurs fonctions délétères. Ces cellules causent de nombreux désordres liés à l'âge et l'élimination contrôlée de ces cellules pourrait représenter une stratégie thérapeutique prometteuse.Le rôle potentiel des cellules sénescentes dans le déclin de l'efficacité vaccinale n'a pas été étudié à notre connaissance. Pour aborder cette question, l'une des possibilités est d'éliminer sélectivement ces cellules à l'aide de drogues sénolytiques. Nous avons utilisé l'ABT-263 (Navitoclax), une drogue qui cible Bcl-2, et avons étudié l'effet du traitement sur la réponse immunitaire induite par vaccination. Pour cela, des souris âgées (22 mois) et des souris adultes jeunes (2 mois) ont été traitées avec le Navitoclax et quelques jours plus tard les souris ont été immunisées avec l'antigène ovalbumine (OVA) en présence d'adjuvant (Quil-A ou CpG ODN). La production des anticorps spécifiques a été étudiée par ELISA et la réponse cellulaire par quantification de l'IFN-gamma suite à une re-stimulation antigénique. Pour étudier l'efficacité de la réponse immunitaire générée par la vaccination, les souris ont été inoculées avec le mélanome B16 exprimant OVA et la croissance tumorale a été mésurée.Dans un premier temps, nous avons montré que le Navitoclax élimine les cellules sénescentes chez les souris âgées, notamment dans la rate : réduction du nombre de cellules exprimant le marqueur de sénescence p16 et Bcl-2 (RTPCR, immunohistochimie) et de l'activité beta-galactosidase, un autre marqueur de sénescence. Cet effet s'accompagne d'une réduction de la production des cytokines inflammatoires dans le sang. Par ailleurs, les splénocytes isolés des souris âgées traitées avec le Navitoclax produisent moins de cytokines inflammatoires en réponse au LPS comparativement aux animaux contrôles. Ayant validé l'efficacité du Navitoclax, nous avons mesuré la réponse immunitaire post-vaccination. La déplétion des cellules sénescentes est associée à une réduction (non-significative) de la production des anticorps (IgM et IgG). De façon contrastée, le traitement par le Navitoclax augmente de la production de l'IFN-gamma par les lymphocytes T suite à la re-stimulation antigénique. Ce dernier effet est également observé chez la souris adulte jeune. De façon inattendue, le Navitoclax abroge l'effet protecteur de la vaccination sur la croissance tumorale chez les souris âgées et dans une moindre mesure chez les souris adultes jeunes. Pour conclure, la déplétion préventive des cellules sénescentes avant la vaccination influence l'efficacité de la réponse immunitaire et a un impact négatif sur la réponse anti-tumorale chez la souris âgée
Age-related decline of immunity reduces vaccine efficacy in the elderly. Cellular senescence - a hallmark of aging - is a physiological process characterized by a state of chronic low-grade inflammation. Senescent cells accumulate with age and are resistant to cell death as a result of increased Bcl-2 expression. Senescent cells show an enhanced pro-inflammatory phenotype, as a part of senescence associated secretory phenotype (SASP) which contributes to inflammation and other detrimental effects. Pre-existing senescent cells cause many aging-related disorders and therapeutic strategies aiming at selectively eliminating these cells have recently gained attention.The potential role of pre-existing senescent cells in vaccine efficacy in the aged populations has not yet been reported to our knowledge. This can be achieved through different approaches such as the use of senolytic drugs that selectively target and eliminate these cells. Using the specific Bcl-2 family inhibitor senolytic ABT-263 (Navitoclax), we investigated the effects of senolysis on the immune response induced by vaccination. To this end, aged mice (22-months) and young adult mice (2 months) were treated with Navitoclax before immunization and few days later mice were immunized with the antigen Ovalbumin (OVA) plus adjuvant (Quil-A and CpG ODN). Antibody production was quantified by ELISA and the T cell response was quantified by measuring the production of interferon gamma after antigen re-stimulation. To study the efficacy of the immune response post-vaccination, mice were engrafted with OVA-expressing B16 melanoma cells and melanoma outgrowth was measured.ABT-263 treatment depleted senescent cells in the spleen. This was evidenced by immunohistochemistry using antibodies against p16 (a marker of senescence) and Bcl-2 and by quantifying beta-galactosidase activity, another marker of senescence. Depletion of senescent cells also led to a reduced production of systemic SASP-related factors in blood. In the same line, splenocytes isolated from Navitoclax-treated aged mice produced less inflammatory cytokines in response to LPS compared to controls. Having validated the efficacy of Navitoclax, we then turned to analyze the consequences of senescent cell's removal on the immune, anti-tumor response. Navitoclax treatment slightly reduced antigen-specific antibody production. Both IgM and IgG were affected. In contrast, T cells from Navitoclax-treated aged mice produce more IFN-gamma compared to controls. A similar effect was observed in young adult mice. Strikingly, depletion of pre-existing senescent cells before vaccination abrogated the protective effect of the vaccine on tumor outgrowth in aged mice, and to a lower extent, in young adult mice. We conclude that senolysis influences the quality of the immune responses post-vaccination and strongly affects the anti-tumor response in vaccinated aged mice
Style APA, Harvard, Vancouver, ISO itp.
8

Deutscher, Mathieu Meyer Gilles. "Infection expérimentale par le virus respiratoire syncytial bovin étude des interactions entre la vaccination et l'évolution du virus /". [S.l.] : [s.n.], 2007. http://oatao.univ-toulouse.fr/1798/1/celdran_1798.pdf.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Haddad, Nadia. "Vaccination du chien contre la rage : fabrication et contrôles d'un vaccin à virus inactivé préparé sur encéphale d'agneau : étude comparée de l'activité de deux vaccins sur des chiens du terrain en Tunisie". Lyon 1, 1985. http://www.theses.fr/1985LYO10122.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Sagodira, Serge. "Vaccination génétique par voie nasale contre la cryptosporidiose : étude de la réponse immunitaire chez la souris et de la protection dans un modèle caprin". Tours, 1998. http://www.theses.fr/1998TOUR3808.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Vaccination – Immunologie"

1

Symposium in Immunology (7th 1997?). Symposium in Immunology VII: Vaccination. Berlin: Springer, 1998.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

1956-, Zhang Jingwu, i Cohen Irun R, red. T-cell vaccination. New York: Nova Biomedical Books, 2008.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

E, Kaufmann S. H., red. Novel vaccination strategies. Weinheim: Wiley-VCH, 2004.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Ada, G. L. Vaccination: The facts, the fears, the future. St. Leonards, N.S.W: Allen & Unwin, 2000.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

J, Raus, red. T cell vaccination and autoimmune disease. New York: Springer-Verlag, 1995.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Foged, Camilla. Subunit vaccine delivery. Redaktorzy Rades Thomas author, Perrie Yvonne author i Hook Sarah author. New York: Springer, 2015.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Alejandro, Schudel, Lombard Michel i International Office of Epizootics, red. Control of infectious animal diseases by vaccination: Buenos Aires, Argentina, 13-16 April, 2005 ; proceedings of a conference organized by the World Organisation for Animal Health-OIE. Basel: Karger, 2004.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Alejandro, Schudel, i Lombard Michel, red. Control of infectious animal diseases by vaccination: Buenos Aires, Argentina, 13-16 April, 2005. Basel: Karger, 2005.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

International, Meeting on the History of Vaccinology (1995 Marnes-la Coquette Hauts-de-Seine). Vaccinia, vaccination, vaccinology: Jenner, Pasteur, and their successors. Paris: Elsevier, 1996.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Aronova, E. A. Immunitet: Teorii︠a︡, filosofii︠a︡ i ėksperiment : ocherki iz istorii immunologii XX veka. Moskva: KomKn., 2006.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Vaccination – Immunologie"

1

Catchpole, Brian, i Harm HogenEsch. "Vaccination". W Day's Veterinary Immunology, 217–33. Wyd. 3. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003310969-13.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Klimov, Vladimir V. "Vaccination". W From Basic to Clinical Immunology, 291–304. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-03323-1_8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Jaspreet, Dhami, Wang Vivian, Wang Ziwei, Pham Brittney, Yabuno Jamie i Joseph Yusin. "Vaccination". W Absolute Allergy and Immunology Board Review, 307–15. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12867-7_30.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Durrant, L. G., I. Spendlove i R. A. Robins. "Anti-idiotypic vaccination". W Cancer Immunology, 171–80. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-017-0963-7_10.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Rijkers, G. T. "17 Vaccins en vaccinatie". W Immunologie, 361–76. Houten: Bohn Stafleu van Loghum, 2009. http://dx.doi.org/10.1007/978-90-313-6528-9_17.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Rijkers, G. T. "Vaccins en vaccinatie". W Leerboek immunologie, 421–39. Houten: Bohn Stafleu van Loghum, 2016. http://dx.doi.org/10.1007/978-90-368-0258-1_17.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Rijkers, G. T., i F. G. M. Kroese. "Vaccins en vaccinatie". W Leerboek immunologie, 435–54. Houten: Bohn Stafleu van Loghum, 2023. http://dx.doi.org/10.1007/978-90-368-2817-8_16.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Cohen, Noah D., i Angela I. Bordin. "Principles of Vaccination". W Equine Clinical Immunology, 263–78. Chichester, UK: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119086512.ch28.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Sharapova, Svetlana O. "Fever After DPT Vaccination". W Pediatric Immunology, 249–54. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-21262-9_49.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Huizinga, T. W. J., i L. G. Visser. "15 Vaccinatie en immunomodulatie". W Medische immunologie, 267–77. Houten: Bohn Stafleu van Loghum, 2016. http://dx.doi.org/10.1007/978-90-368-1613-7_15.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Vaccination – Immunologie"

1

Telgen, Maaike C., M. G. J. Brusse-Keizer, G. T. Rijkers, J. van der Palen, H. A. M. Kerstjens, M. G. R. Hendrix i P. D. L. P. M. van der Valk. "Immunologic Responses In COPD Patients: The Annual Influenza Vaccination". W American Thoracic Society 2012 International Conference, May 18-23, 2012 • San Francisco, California. American Thoracic Society, 2012. http://dx.doi.org/10.1164/ajrccm-conference.2012.185.1_meetingabstracts.a2270.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Pamar, P., K. Krolikowski, D. Rudym, M. Lesko, L. F. Angel, L. N. Segal i J. G. Natalini. "Immunologic Effects of SARS-CoV-2 Vaccination in Lung Transplant Recipients". W American Thoracic Society 2023 International Conference, May 19-24, 2023 - Washington, DC. American Thoracic Society, 2023. http://dx.doi.org/10.1164/ajrccm-conference.2023.207.1_meetingabstracts.a6044.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Garrido, Greta, Brett Schrand, Agata Levay, Ailem Rabasa, Anthony Ferrantella, Diane Da Silva, Francesca D’Eramo i in. "Abstract B26: Prorapeutic vaccination against shared antigens induced in future tumors". W Abstracts: AACR Special Conference on Tumor Immunology and Immunotherapy; November 17-20, 2019; Boston, MA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/2326-6074.tumimm19-b26.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Brody, Joshua D. "Abstract IA32: Improving checkpoint blockade for lymphoma with Flt3L-primed in situ vaccination". W Abstracts: AACR Special Conference on Tumor Immunology and Immunotherapy; October 1-4, 2017; Boston, MA. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/2326-6074.tumimm17-ia32.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Kim, Ha, Keejong Hong, Byung Cheol Ahn, Jung Sun Yum i Hyewon Youn. "Abstract B25: Visualization of immune response to Hepatitis B vaccination by in vivo mouse imaging". W Abstracts: AACR Special Conference on Tumor Immunology and Immunotherapy; October 20-23, 2016; Boston, MA. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/2326-6074.tumimm16-b25.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Carpanese, D., I. Montagner, A. Dalla Pietà, V. Rossi, A. Penna, G. Zuccolotto, G. Pasut, A. Grigoletto i A. Rosato. "P09.03 Hyaluronic acid as a new immunologic adjuvant in cancer: design of effective preventive and therapeutic vaccination strategies for HER2/neu-positive breast tumors". W iTOC8 – the 8th Leading International Cancer Immunotherapy Conference in Europe, 8–9 October 2021, Virtual Conference. BMJ Publishing Group Ltd, 2021. http://dx.doi.org/10.1136/jitc-2021-itoc8.53.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Marron, Thomas, Nina Bhardwaj, Elizabeth Crowley, Tibor Keler, Thomas Davis, Andres Salazar i Joshua Brody. "Abstract IA03: Turning a tumor into a vaccine factory: In situ vaccination for low-grade lymphoma". W Abstracts: AACR Special Conference: Tumor Immunology and Immunotherapy: A New Chapter; December 1-4, 2014; Orlando, FL. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/2326-6074.tumimm14-ia03.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Witt, Kristina, Maarten Alexander Ligtenberg, Laura Conti, Stefania Lanzardo, Roberto Ruiu, Helena Tufvesson-Stiller, Jeanette Ostling i in. "Abstract A77: Cripto-1 vaccination elicits protective immune response to metastatic breast cancer and breast cancer stem cells". W Abstracts: AACR Special Conference on Tumor Immunology and Immunotherapy; October 1-4, 2017; Boston, MA. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/2326-6074.tumimm17-a77.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Schreiber, Taylor H., Louis Gonzalez, Dietlinde Wolf, Maria Bodero i Eckhard R. Podack. "Abstract A38: T cell costimulation by TNFRSF4, TNFRSF18, and TNFRSF25 in the context of vaccination." W Abstracts: AACR Special Conference on Tumor Immunology: Multidisciplinary Science Driving Basic and Clinical Advances; December 2-5, 2012; Miami, FL. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.tumimm2012-a38.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Andersen, Brian M., G. Elizabeth Pluhar, Charles E. Seiler, Zhengming Xiong, Michelle R. Goulart, Matthew Gerry O'Sullivan, Matthew A. Hunt, Charles E. Schiaffo, David M. Ferguson i John R. Ohlfest. "Abstract B32: Preclinical testing of three immune adjuvants in vaccination therapy for invasive canine meningioma." W Abstracts: AACR Special Conference on Tumor Immunology: Multidisciplinary Science Driving Basic and Clinical Advances; December 2-5, 2012; Miami, FL. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.tumimm2012-b32.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii