Artykuły w czasopismach na temat „Vacancy Engineering”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Vacancy Engineering”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Huang, Yanmei, Yu Yu, Yifu Yu i Bin Zhang. "Oxygen Vacancy Engineering in Photocatalysis". Solar RRL 4, nr 8 (31.03.2020): 2000037. http://dx.doi.org/10.1002/solr.202000037.
Pełny tekst źródłaWang, Biao, Jiawen Liu, Shan Yao, Fangyan Liu, Yuekun Li, Jiaqing He, Zhang Lin, Feng Huang, Chuan Liu i Mengye Wang. "Vacancy engineering in nanostructured semiconductors for enhancing photocatalysis". Journal of Materials Chemistry A 9, nr 32 (2021): 17143–72. http://dx.doi.org/10.1039/d1ta03895h.
Pełny tekst źródłaPan, Rongjian, Aitao Tang, Jiantao Qin, Tianyuan Xin, Xiaoyong Wu, Bang Wen i Lu Wu. "Trapping Capability of Small Vacancy Clusters in the α-Zr Doped with Alloying Elements: A First-Principles Study". Crystals 12, nr 7 (18.07.2022): 997. http://dx.doi.org/10.3390/cryst12070997.
Pełny tekst źródłaLee, Seonjeong, Han Ju Lee, Yena Ji, Sung Mook Choi, Keun Hyung Lee i Kihyon Hong. "Vacancy engineering of a solution processed CuI semiconductor: tuning the electrical properties of inorganic P-channel thin-film transistors". Journal of Materials Chemistry C 8, nr 28 (2020): 9608–14. http://dx.doi.org/10.1039/d0tc02005b.
Pełny tekst źródłaLi, Tong, Qi Wang i Zhou Wang. "Oxygen Vacancy Injection on (111) CeO2 Nanocrystal Facets for Efficient H2O2 Detection". Biosensors 12, nr 8 (3.08.2022): 592. http://dx.doi.org/10.3390/bios12080592.
Pełny tekst źródłaShoemaker, J. R., R. T. Lutton, D. Wesley, W. R. Wharton, M. L. Oehrli, M. S. Herte, M. J. Sabochick i N. Q. Lam. "Point defect study of CuTi and CuTi2". Journal of Materials Research 6, nr 3 (marzec 1991): 473–82. http://dx.doi.org/10.1557/jmr.1991.0473.
Pełny tekst źródłaGwilliam, R., N. E. B. Cowern, B. Colombeau, B. Sealy i A. J. Smith. "Vacancy engineering for ultra-shallow junction formation". Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 261, nr 1-2 (sierpień 2007): 600–603. http://dx.doi.org/10.1016/j.nimb.2007.04.048.
Pełny tekst źródłaYamashita, Shohei, i Kazumasa Takami. "Autonomous, Distributed Parking Lot Vacancy Management Using Intervehicle Communication". International Journal of Vehicular Technology 2014 (21.07.2014): 1–9. http://dx.doi.org/10.1155/2014/647487.
Pełny tekst źródłaGebauer, Ralph. "Oxygen Vacancies in Zirconia and Their Migration: The Role of Hubbard-U Parameters in Density Functional Theory". Crystals 13, nr 4 (28.03.2023): 574. http://dx.doi.org/10.3390/cryst13040574.
Pełny tekst źródłaROUHI, A. MAUREEN. "NO VACANCY". Chemical & Engineering News Archive 80, nr 7 (18.02.2002): 84–85. http://dx.doi.org/10.1021/cen-v080n007.p084.
Pełny tekst źródłaYang, Bian, Jihong Bian, Lei Wang, Jianwei Wang, Yaping Du, Zhiguang Wang, Chao Wu i Yaodong Yang. "Enhanced photocatalytic activity of perovskite NaNbO3 by oxygen vacancy engineering". Physical Chemistry Chemical Physics 21, nr 22 (2019): 11697–704. http://dx.doi.org/10.1039/c9cp01763a.
Pełny tekst źródłaLi, Jie, Kaige Huang, Yanbin Huang, Yumin Ye, Marcin Ziółek, Zhijie Wang, Shizhong Yue i in. "State-of-the-art advances in vacancy defect engineering of graphitic carbon nitride for solar water splitting". Journal of Semiconductors 44, nr 8 (1.08.2023): 081701. http://dx.doi.org/10.1088/1674-4926/44/8/081701.
Pełny tekst źródłaJia, Tiekun, Chenxi Sun, Nianfeng Shi, Dongsheng Yu, Fei Long, Ji Hu, Jilin Wang i in. "Efficient Oxygen Vacancy Defect Engineering for Enhancing Visible-Light Photocatalytic Performance over SnO2−x Ultrafine Nanocrystals". Nanomaterials 12, nr 19 (25.09.2022): 3342. http://dx.doi.org/10.3390/nano12193342.
Pełny tekst źródłaFeng, Haifeng, Zhongfei Xu, Long Ren, Chen Liu, Jincheng Zhuang, Zhenpeng Hu, Xun Xu i in. "Activating Titania for Efficient Electrocatalysis by Vacancy Engineering". ACS Catalysis 8, nr 5 (11.04.2018): 4288–93. http://dx.doi.org/10.1021/acscatal.8b00719.
Pełny tekst źródłaWen, Yan Ni. "Atomic Diffusion in the (001) Surface of Cu3Ag Ordered Alloy". Advanced Materials Research 680 (kwiecień 2013): 3–7. http://dx.doi.org/10.4028/www.scientific.net/amr.680.3.
Pełny tekst źródłaDong, Jinfeng, Fu-Hua Sun, Huaichao Tang, Jun Pei, Hua-Lu Zhuang, Hai-Hua Hu, Bo-Ping Zhang, Yu Pan i Jing-Feng Li. "Medium-temperature thermoelectric GeTe: vacancy suppression and band structure engineering leading to high performance". Energy & Environmental Science 12, nr 4 (2019): 1396–403. http://dx.doi.org/10.1039/c9ee00317g.
Pełny tekst źródłaYang, Heng Quan, Xiao Yang Wang, Hong Wu, Bin Zhang, Dan Dan Xie, Yong Jin Chen, Xu Lu, Xiao Dong Han, Lei Miao i Xiao Yuan Zhou. "Sn vacancy engineering for enhancing the thermoelectric performance of two-dimensional SnS". Journal of Materials Chemistry C 7, nr 11 (2019): 3351–59. http://dx.doi.org/10.1039/c8tc05711g.
Pełny tekst źródłaWang, Yun Fei, Yun Kai Li i Ming Xia. "Valence Electron Structures Analysis on Relationship of Cu Physical or Mechanical Properties and Vacancy". Advanced Materials Research 750-752 (sierpień 2013): 776–81. http://dx.doi.org/10.4028/www.scientific.net/amr.750-752.776.
Pełny tekst źródłaTan, X. J., H. Z. Shao, J. He, G. Q. Liu, J. T. Xu, J. Jiang i H. C. Jiang. "Band engineering and improved thermoelectric performance in M-doped SnTe (M = Mg, Mn, Cd, and Hg)". Physical Chemistry Chemical Physics 18, nr 10 (2016): 7141–47. http://dx.doi.org/10.1039/c5cp07620j.
Pełny tekst źródłaSun, Shi Yang, Ping Ping Xu, Xue Jie Liu i Xin Tan. "First-Principles Calculation of the Vacancy Formation Energy in VC". Advanced Materials Research 887-888 (luty 2014): 966–69. http://dx.doi.org/10.4028/www.scientific.net/amr.887-888.966.
Pełny tekst źródłaChen, Pengfei, Yiao Huang, Zuhao Shi, Xingzhu Chen i Neng Li. "Improving the Catalytic CO2 Reduction on Cs2AgBiBr6 by Halide Defect Engineering: A DFT Study". Materials 14, nr 10 (11.05.2021): 2469. http://dx.doi.org/10.3390/ma14102469.
Pełny tekst źródłaChu, Chun-Hsiao. "Optimal Fare, Vacancy Rate, and Subsidies under Log-Linear Demand with the Consideration of Externalities for a Cruising Taxi Market". Mathematical Problems in Engineering 2017 (2017): 1–11. http://dx.doi.org/10.1155/2017/5192968.
Pełny tekst źródłaXiong, Shi Yun, Wei Hong Qi, Bai Yun Huang i Ming Pu Wang. "Size and Dimension Dependent Vacancy Formation Energy of Nanosolids". Advanced Materials Research 268-270 (lipiec 2011): 930–33. http://dx.doi.org/10.4028/www.scientific.net/amr.268-270.930.
Pełny tekst źródłaKumar, Jeevesh, Adil Meersha, Harsha B. Variar, Abhishek Mishra i Mayank Shrivastava. "Carbon Vacancy Assisted Contact Resistance Engineering in Graphene FETs". IEEE Transactions on Electron Devices 69, nr 4 (kwiecień 2022): 2066–73. http://dx.doi.org/10.1109/ted.2022.3151033.
Pełny tekst źródłaKilpeläinen, S., K. Kuitunen, F. Tuomisto, J. Slotte, E. Bruno, S. Mirabella i F. Priolo. "Vacancy engineering by He induced nanovoids in crystalline Si". Semiconductor Science and Technology 24, nr 1 (5.12.2008): 015005. http://dx.doi.org/10.1088/0268-1242/24/1/015005.
Pełny tekst źródłaZhu, Yue, i Guihua Yu. "Engineering Surface Vacancy to Stabilize High-Voltage Battery Cathodes". Chem 4, nr 7 (lipiec 2018): 1486–87. http://dx.doi.org/10.1016/j.chempr.2018.06.012.
Pełny tekst źródłaRen, Jie, Chunxiao Zhang, Jin Li, Zhixin Guo, Huaping Xiao i Jianxin Zhong. "Strain engineering of magnetic state in vacancy-doped phosphorene". Physics Letters A 380, nr 40 (wrzesień 2016): 3270–77. http://dx.doi.org/10.1016/j.physleta.2016.07.055.
Pełny tekst źródłaWang, Qi, Shan Zhang, Hanna He, Chunlin Xie, Yougen Tang, Chuanxin He, Minhua Shao i Haiyan Wang. "Oxygen Vacancy Engineering in Titanium Dioxide for Sodium Storage". Chemistry – An Asian Journal 16, nr 1 (23.11.2020): 3–19. http://dx.doi.org/10.1002/asia.202001172.
Pełny tekst źródłaGuo, Hong, i Jing Wang. "Effect of Vacancy Defects on the Vibration Frequency of Graphene Nanoribbons". Nanomaterials 12, nr 5 (24.02.2022): 764. http://dx.doi.org/10.3390/nano12050764.
Pełny tekst źródłaGao, Qin, Wei Luo, Xueying Ma, Zemian Ma, Sijun Li, Fenglin Gou, Wei Shen, Yimin Jiang, Rongxing He i Ming Li. "Electronic modulation and vacancy engineering of Ni9S8 to synergistically boost efficient water splitting: Active vacancy-metal pairs". Applied Catalysis B: Environmental 310 (sierpień 2022): 121356. http://dx.doi.org/10.1016/j.apcatb.2022.121356.
Pełny tekst źródłaXu, Xiao, Xing Ding, Xianglong Yang, Pei Wang, Shu Li, Zhexue Lu i Hao Chen. "Oxygen vacancy boosted photocatalytic decomposition of ciprofloxacin over Bi2MoO6: Oxygen vacancy engineering, biotoxicity evaluation and mechanism study". Journal of Hazardous Materials 364 (luty 2019): 691–99. http://dx.doi.org/10.1016/j.jhazmat.2018.10.063.
Pełny tekst źródłaParedes, J. I., P. Solís-Fernández, A. Martínez-Alonso i J. M. D. Tascón. "Atomic Vacancy Engineering of Graphitic Surfaces: Controlling the Generation and Harnessing the Migration of the Single Vacancy". Journal of Physical Chemistry C 113, nr 23 (13.05.2009): 10249–55. http://dx.doi.org/10.1021/jp901578c.
Pełny tekst źródłaWang, Songcan, Xin Wang, Boyan Liu, Zhaochen Guo, Kostya (Ken) Ostrikov, Lianzhou Wang i Wei Huang. "Vacancy defect engineering of BiVO4 photoanodes for photoelectrochemical water splitting". Nanoscale 13, nr 43 (2021): 17989–8009. http://dx.doi.org/10.1039/d1nr05691c.
Pełny tekst źródłaWang, Songcan, Xin Wang, Boyan Liu, Zhaochen Guo, Kostya (Ken) Ostrikov, Lianzhou Wang i Wei Huang. "Vacancy defect engineering of BiVO4 photoanodes for photoelectrochemical water splitting". Nanoscale 13, nr 43 (2021): 17989–8009. http://dx.doi.org/10.1039/d1nr05691c.
Pełny tekst źródłaJia, Dongbo, Lili Han, Ying Li, Wenjun He, Caichi Liu, Jun Zhang, Cong Chen, Hui Liu i Huolin L. Xin. "Optimizing electron density of nickel sulfide electrocatalysts through sulfur vacancy engineering for alkaline hydrogen evolution". Journal of Materials Chemistry A 8, nr 35 (2020): 18207–14. http://dx.doi.org/10.1039/d0ta05594h.
Pełny tekst źródłaLiu, Qian, Qin Chen, Tianyu Li, Qinhao Ren, Shuxian Zhong, Yuling Zhao i Song Bai. "Vacancy engineering of AuCu cocatalysts for improving the photocatalytic conversion of CO2 to CH4". Journal of Materials Chemistry A 7, nr 47 (2019): 27007–15. http://dx.doi.org/10.1039/c9ta09938g.
Pełny tekst źródłaYuhara, S., Yorinobu Takigawa, Tokuteru Uesugi i Kenji Higashi. "Effect of Co-Doping Cation on Phase Stability of Zirconia Bioceramics in Hot Water". Advanced Materials Research 26-28 (październik 2007): 773–76. http://dx.doi.org/10.4028/www.scientific.net/amr.26-28.773.
Pełny tekst źródłaCheng, Ling, Yuhang Li, Aiping Chen, Yihua Zhu i Chunzhong Li. "Impacts on carbon dioxide electroreduction of cadmium sulfides via continuous surface sulfur vacancy engineering". Chemical Communications 56, nr 4 (2020): 563–66. http://dx.doi.org/10.1039/c9cc08330h.
Pełny tekst źródłaMehmood, Rashid, Xiaochun Wang, Pramod Koshy, Jia Lin Yang i Charles C. Sorrell. "Engineering oxygen vacancies through construction of morphology maps for bio-responsive nanoceria for osteosarcoma therapy". CrystEngComm 20, nr 11 (2018): 1536–45. http://dx.doi.org/10.1039/c8ce00001h.
Pełny tekst źródłaYang, Li, Li Xiaoyan i Peng Yao. "The effect of vacancy on the interfacial diffusion in Cu/Sn lead-free solder joints". Soldering & Surface Mount Technology 31, nr 1 (18.02.2019): 28–39. http://dx.doi.org/10.1108/ssmt-03-2018-0010.
Pełny tekst źródłaWeng, Zhen Zhen, Zhi Gao Huang i Wen Xiong Lin. "First-Principles Study on Co-Doped ZnO with Oxygen Vacancy". Advanced Materials Research 154-155 (październik 2010): 124–29. http://dx.doi.org/10.4028/www.scientific.net/amr.154-155.124.
Pełny tekst źródłaLi, Jian. "Effect of Defects on Oscillatory Behaviors of Double-Walled Carbon Nanotube Oscillators". Advanced Materials Research 308-310 (sierpień 2011): 584–88. http://dx.doi.org/10.4028/www.scientific.net/amr.308-310.584.
Pełny tekst źródłaCai, Yiwei, Zhengli Lu, Xin Xu, Yujia Gao, Tingting Shi, Xin Wang i Lingling Shui. "Bandgap Engineering of Two-Dimensional Double Perovskite Cs4AgBiBr8/WSe2 Heterostructure from Indirect Bandgap to Direct Bandgap by Introducing Se Vacancy". Materials 16, nr 10 (11.05.2023): 3668. http://dx.doi.org/10.3390/ma16103668.
Pełny tekst źródłaLuo, Linfei, Bojun Wang, Jianwei Wang i Xiaobin Niu. "Vacancy engineering of WO3−x nanosheets for electrocatalytic NRR process – a first-principles study". Physical Chemistry Chemical Physics 23, nr 31 (2021): 16658–63. http://dx.doi.org/10.1039/d1cp01874d.
Pełny tekst źródłaSun, Zhen Hui, Lan Li Chen i Zhi Hua Xiong. "Magnetism Driven by Intrinsic Defect in GaN Nanowires". Advanced Materials Research 236-238 (maj 2011): 2160–65. http://dx.doi.org/10.4028/www.scientific.net/amr.236-238.2160.
Pełny tekst źródłaAo, L., A. Pham, H. Y. Xiao, X. T. Zu i S. Li. "Engineering the electronic and magnetic properties of d0 2D dichalcogenide materials through vacancy doping and lattice strains". Physical Chemistry Chemical Physics 18, nr 10 (2016): 7163–68. http://dx.doi.org/10.1039/c5cp07548c.
Pełny tekst źródłaJin, C. G., Y. Yang, Z. F. Wu, L. J. Zhuge, Q. Han, X. M. Wu, Y. Y. Li i Z. C. Feng. "Tunable ferromagnetic behavior in Cr doped ZnO nanorod arrays through defect engineering". J. Mater. Chem. C 2, nr 16 (2014): 2992–97. http://dx.doi.org/10.1039/c4tc00074a.
Pełny tekst źródłaShamirzaev, Timur S., Victor V. Atuchin, Vladimir E. Zhilitskiy i Alexander Yu Gornov. "Dynamics of Vacancy Formation and Distribution in Semiconductor Heterostructures: Effect of Thermally Generated Intrinsic Electrons". Nanomaterials 13, nr 2 (11.01.2023): 308. http://dx.doi.org/10.3390/nano13020308.
Pełny tekst źródłaShi, Chunjing, Xiaoli Dong, Jiawei Wang, Xiuying Wang, Hongchao Ma i Xiufang Zhang. "Interfacial defect engineering over fusiform bismuth vanadate photocatalyst enables to excellent solar-to-chemical energy coupling". RSC Advances 7, nr 43 (2017): 26717–21. http://dx.doi.org/10.1039/c7ra04328g.
Pełny tekst źródłaBrown, Joshua J., Youxiang Shao, Zhuofeng Ke i Alister J. Page. "Anion ordering and vacancy defects in niobium perovskite oxynitrides". Materials Advances 2, nr 7 (2021): 2398–407. http://dx.doi.org/10.1039/d1ma00122a.
Pełny tekst źródła