Gotowa bibliografia na temat „Urological biomaterials”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Urological biomaterials”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Urological biomaterials"

1

Raut, Piyush W., Anand P. Khandwekar i Neeti Sharma. "Polyurethane–polyvinylpyrrolidone iodine blends as potential urological biomaterials". Journal of Materials Science 53, nr 16 (22.05.2018): 11176–93. http://dx.doi.org/10.1007/s10853-018-2445-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

D'Addessi, Alessandro, Matteo Vittori i Emilio Sacco. "An Introduction to Biomaterials in Urology". Urologia Journal 80, nr 1 (styczeń 2013): 20–28. http://dx.doi.org/10.5301/ru.2013.10767.

Pełny tekst źródła
Streszczenie:
Aim of this paper is to provide a brief introduction on the biomaterials used in urology, discussing issues of biocompatibility and biomaterials available for use. Information will moreover be provided on basic elements of Tissue engineering and Regenerative medicine, rapidly advancing technologies that could finally shift in the next future from the laboratory to clinical practice, with special interest to possible urological applications.
Style APA, Harvard, Vancouver, ISO itp.
3

Zhang, Chaoxing, Jiajia Lin i Huinan Liu. "Magnesium-based Biodegradable Materials for Biomedical Applications". MRS Advances 3, nr 40 (2018): 2359–64. http://dx.doi.org/10.1557/adv.2018.488.

Pełny tekst źródła
Streszczenie:
ABSTRACTMagnesium (Mg)-based biomaterials have attracted increasing attention in biomedical applications, such as orthopaedic, cardiovascular, urological, and neural applications because of the biocompatibility, biodegradability, antibacterial properties, and excellent mechanical properties. However, rapid degradation of Mg is the major concern for many clinical applications. Alloying Mg with other elements and engineering proper surfaces are the two approaches to control the degradation of Mg-based biomaterials. Our lab has investigated several classes of Mg-based biodegradable alloys and various surface treatment methods for medical implant and device applications. This mini-review highlights key research progress on Mg-based biomaterials and suggests future directions for Mg-based biomaterials.
Style APA, Harvard, Vancouver, ISO itp.
4

Williams, H., A. Singla, K. Broadrick, B. Krishnamurthy i P. Van de Vord. "UP-2.185: In Vivo Responses to Biomaterials Used in Urological Reconstruction". Urology 74, nr 4 (październik 2009): S290. http://dx.doi.org/10.1016/j.urology.2009.07.404.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Caneparo, Christophe, Stéphane Chabaud i Stéphane Bolduc. "Reconstruction of Vascular and Urologic Tubular Grafts by Tissue Engineering". Processes 9, nr 3 (12.03.2021): 513. http://dx.doi.org/10.3390/pr9030513.

Pełny tekst źródła
Streszczenie:
Tissue engineering is one of the most promising scientific breakthroughs of the late 20th century. Its objective is to produce in vitro tissues or organs to repair and replace damaged ones using various techniques, biomaterials, and cells. Tissue engineering emerged to substitute the use of native autologous tissues, whose quantities are sometimes insufficient to correct the most severe pathologies. Indeed, the patient’s health status, regulations, or fibrotic scars at the site of the initial biopsy limit their availability, especially to treat recurrence. This new technology relies on the use of biomaterials to create scaffolds on which the patient’s cells can be seeded. This review focuses on the reconstruction, by tissue engineering, of two types of tissue with tubular structures: vascular and urological grafts. The emphasis is on self-assembly methods which allow the production of tissue/organ substitute without the use of exogenous material, with the patient’s cells producing their own scaffold. These continuously improved techniques, which allow rapid graft integration without immune rejection in the treatment of severely burned patients, give hope that similar results will be observed in the vascular and urological fields.
Style APA, Harvard, Vancouver, ISO itp.
6

Davis, N. F., B. B. McGuire, A. Callanan, H. D. Flood i T. M. McGloughlin. "Xenogenic Extracellular Matrices as Potential Biomaterials for Interposition Grafting in Urological Surgery". Journal of Urology 184, nr 6 (grudzień 2010): 2246–53. http://dx.doi.org/10.1016/j.juro.2010.07.038.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Farmanova, Nodira Takhirovna, Lola Tairkhanovna Pulatova, Dildor Irgashevna Mambetova, Arzikul Dzhurakulovich Nurullaev i Dlafruz Kabiljanovna Khudoykulova. "CHEMICAL COMPOSITION OF THE UROLOGY COLLECTION". chemistry of plant raw material, nr 1 (16.03.2021): 227–32. http://dx.doi.org/10.14258/jcprm.2021017542.

Pełny tekst źródła
Streszczenie:
In order to identify the main biologically active complex, there were carried out a chemical analysis of the urological collection. As a result of the study, there were established the presence of water-soluble polysaccharides in the urological collection 3.2±0.3%, amino acids – 406.3±0.01 nmol, ascorbic acid 45.0±0.5 mg%, carotenoids 0.50±0.04 mg%, organic acids 1.87±0.2%, essential oil – 0.79±0.1%, flavonoids – 0.43±0.04%, coumarins – 0.18±0.2%, phenolcarboxylic acids – 0.41±0.2%, tannins – 5.3±0.4%, saponins (glycyrrhizic acid) – 1.15±0.2%, as well as macro- and micronutrients – 19596.65±0.002 mg/kg. The elemental composition of the collection is represented by 17 vital elements (K, Ca, Mg, Na, P are the dominant components). During studies have also shown the presence of 14 amino acids, 7 of which are essential (44.6% of the total amino acids). It can be clearly stated that the indicator components of the collection are polyphenolic compounds (flavonoids, tannins, etc.) and saponins (glycyrrhizic acid) predominantly passing into aqueous extracts (the proposed dosage form) of the collection, the complex of which determines the specific activity of the studied urological collection. The obtained data were used to develop the authenticity and criteria of the quality of the studied collection.
Style APA, Harvard, Vancouver, ISO itp.
8

Tunney, M. M., i S. P. Gorman. "Evaluation of a poly(vinyl pyrollidone)-coated biomaterial for urological use". Biomaterials 23, nr 23 (grudzień 2002): 4601–8. http://dx.doi.org/10.1016/s0142-9612(02)00206-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Zhao, J., S. Zeiai, Å. Ekblad, A. Nordenskjöld, J. Hilborn, C. Götherström i M. Fossum. "Transdifferentiation of autologous bone marrow cells on a collagen-poly(ε-caprolactone) scaffold for tissue engineering in complete lack of native urothelium". Journal of The Royal Society Interface 11, nr 96 (6.07.2014): 20140233. http://dx.doi.org/10.1098/rsif.2014.0233.

Pełny tekst źródła
Streszczenie:
Urological reconstructive surgery is sometimes hampered by a lack of tissue. In some cases, autologous urothelial cells (UCs) are not available for cell expansion and ordinary tissue engineering. In these cases, we wanted to explore whether autologous mesenchymal stem cells (MSCs) from bone marrow could be used to create urological transplants. MSCs from human bone marrow were cultured in vitro with medium conditioned by normal human UCs or by indirect co-culturing in culture well inserts. Changes in gene expression, protein expression and cell morphology were studied after two weeks using western blot, RT-PCR and immune staining. Cells cultured in standard epithelial growth medium served as controls. Bone marrow MSCs changed their phenotype with respect to growth characteristics and cell morphology, as well as gene and protein expression, to a UC lineage in both culture methods, but not in controls. Urothelial differentiation was also accomplished in human bone marrow MSCs seeded on a three-dimensional poly(ε-caprolactone) (PCL)–collagen construct. Human MSCs could easily be harvested by bone marrow aspiration and expanded and differentiated into urothelium. Differentiation could take place on a three-dimensional hybrid PCL-reinforced collagen-based scaffold for creation of a tissue-engineered autologous transplant for urological reconstructive surgery.
Style APA, Harvard, Vancouver, ISO itp.
10

Casarin, Martina, Tiago Moderno Fortunato, Saima Jalil Imran, Martina Todesco, Deborah Sandrin, Massimo Marchesan, Gino Gerosa i in. "Preliminary In Vitro Assessment of Decellularized Porcine Descending Aorta for Clinical Purposes". Journal of Functional Biomaterials 14, nr 3 (2.03.2023): 141. http://dx.doi.org/10.3390/jfb14030141.

Pełny tekst źródła
Streszczenie:
Conduit substitutes are increasingly in demand for cardiovascular and urological applications. In cases of bladder cancer, radical cystectomy is the preferred technique: after removing the bladder, a urinary diversion has to be created using autologous bowel, but several complications are associated with intestinal resection. Thus, alternative urinary substitutes are required to avoid autologous intestinal use, preventing complications and facilitating surgical procedures. In the present paper, we are proposing the exploitation of the decellularized porcine descending aorta as a novel and original conduit substitute. After being decellularized with the use of two alternative detergents (Tergitol and Ecosurf) and sterilized, the porcine descending aorta has been investigated to assess its permeability to detergents through methylene blue dye penetration analysis and to study its composition and structure by means of histomorphometric analyses, including DNA quantification, histology, two-photon microscopy, and hydroxyproline quantification. Biomechanical tests and cytocompatibility assays with human mesenchymal stem cells have been also performed. The results obtained demonstrated that the decellularized porcine descending aorta preserves its major features to be further evaluated as a candidate material for urological applications, even though further studies have to be carried out to demonstrate its suitability for the specific application, by performing in vivo tests in the animal model.
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Urological biomaterials"

1

Hamill, Turlough Malachy. "Physicochemical and in vitro biological characterisation of novel hydrogel systems as urological biomaterials". Thesis, Queen's University Belfast, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.527928.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Urological biomaterials"

1

Biomaterials and tissue engineering in urology. Boca Raton: CRC Press, 2009.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Urological biomaterials"

1

Acar, Ömer, i Ervin Kocjancic. "Injections and Biomaterials". W Urologic Surgery in the Digital Era, 111–28. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63948-8_7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Pacheco, Margarida, Joana M. Silva, Ivo M. Aroso, Estêvão Lima, Alexandre A. Barros i Rui L. Reis. "Biomaterials for Ureteral Stents: Advances and Future Perspectives". W Urinary Stents, 197–208. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04484-7_17.

Pełny tekst źródła
Streszczenie:
AbstractUreteral stents play a fundamental role in the relief of several symptoms associated with common urinary diseases in the modern society, such as strictures, obstruction or promotion of ureteral healing. Even though ureteral stents have been used for more than 40 years and their performance had a huge development over time, they are still related with complications that include stent encrustation and urinary tract infections. Therefore, efforts from the research community still continue to better meet the clinical needs. Ureteral stent’s materials have a great influence on their efficacy, mostly in terms of mechanical and physicochemical properties. Thus, understanding the stent material’s properties is fundamental to address problems of encrustation, bacterial adhesion, patient discomfort and the troubles during insertion, by working on the softness, flexibility and surface properties of the device.Considerable progress has been done on ureteral stent’s properties with the aim to meet the clinical problems encountered. Even though this progress does not end up with an ureteral stent without associated complications, it allows to understand the behaviour of different materials and designs in the urologic environment. Indeed, the vast amount of work done and respective outputs have been proven that the different materials can complement each other’s disadvantages, for example, the metals can bear with the high compression that polymeric stents cannot. The goal is to combine the advantages of each material without their associated complications. Therefore, the use of biodegradable materials and combination of different raw materials, together with design adjustments appears to be the future of ureteral stents design.
Style APA, Harvard, Vancouver, ISO itp.
3

FARHAT, W. A., i P. J. GEUTJES. "Artificial biomaterials for urological tissue engineering". W Biomaterials and Tissue Engineering in Urology, 243–54. Elsevier, 2009. http://dx.doi.org/10.1533/9781845696375.3.243.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

ROTH, C. C., B. P. KROPP i E. Y. CHENG. "Natural biomaterials for urological tissue engineering". W Biomaterials and Tissue Engineering in Urology, 255–80. Elsevier, 2009. http://dx.doi.org/10.1533/9781845696375.3.255.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

HARRISON, B. S., i C. L. WARD. "Nanotechnology and urological tissue engineering". W Biomaterials and Tissue Engineering in Urology, 281–98. Elsevier, 2009. http://dx.doi.org/10.1533/9781845696375.3.281.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

ZHANG, Y. "Autologous cell sources for urological applications". W Biomaterials and Tissue Engineering in Urology, 334–56. Elsevier, 2009. http://dx.doi.org/10.1533/9781845696375.3.334.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

CHRIST, G. J., D. BURMEISTER, S. VISHWAJIT, Y. JARAJAPU i K. E. ANDERSSON. "Assessing the performance of tissue-engineered urological implants". W Biomaterials and Tissue Engineering in Urology, 299–321. Elsevier, 2009. http://dx.doi.org/10.1533/9781845696375.3.299.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

GILMORE, B. F., D. S. JONES, S. P. GORMAN i H. CERI. "Models for the assessment of biofilm and encrustation formation on urological materials". W Biomaterials and Tissue Engineering in Urology, 59–81. Elsevier, 2009. http://dx.doi.org/10.1533/9781845696375.1.59.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

DORIN, R., J. YAMZON i C. J. KOH. "Embryonic stem cells, nuclear transfer and parthenogenesis-derived stem cells for urological reconstruction". W Biomaterials and Tissue Engineering in Urology, 357–77. Elsevier, 2009. http://dx.doi.org/10.1533/9781845696375.3.357.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

DE COPPI, P., G. BARTSCH i A. ATALA. "Amniotic fluid and placental stem cells as a source for urological regenerative medicine". W Biomaterials and Tissue Engineering in Urology, 378–94. Elsevier, 2009. http://dx.doi.org/10.1533/9781845696375.3.378.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Urological biomaterials"

1

Gonçalves, Nicolas Cardoso, i Luciana Barros Sant'anna. "POTENCIAL DA MEMBRANA AMNIÓTICA HUMANA NA MEDICINA REGENERATIVA". W I Congresso Brasileiro de Saúde Pública On-line: Uma abordagem Multiprofissional. Revista Multidisciplinar em Saúde, 2021. http://dx.doi.org/10.51161/rems/2856.

Pełny tekst źródła
Streszczenie:
Introdução: A membrana amniótica humana (MA) é um atrativo biomaterial para o campo da medicina regenerativa (MR), que visa restaurar a função comprometida por traumas, defeitos congênitos, senescência, doenças inflamatórias e degenerativas. A importância crescente da MR é devida às modificações demográficas, como o aumento do envelhecimento da população. Nesse contexto, uma tecnologia que garanta qualidade de vida às pessoas acometidas por doenças crônica, e compatível com custos aceitáveis, é de grande importância para a saúde pública. Objetivo: Descrever as propriedades biológicas e mecânicas, as aplicações clínicas, a forma de colheita e preservação da MA. Material e métodos: revisão da literatura no período de 2016 a 2021 nas bases PubMed e Google Scholar. Resultados: A MA é um tecido biocompatível, e suas propriedades mecânicas como estabilidade, flexibilidade e permeabilidade, fazem dela um potencial scaffold, suportando o crescimento, adesão e migração celular, características necessárias para a engenharia tecidual. O transplante de MA intacta exerce efeitos anti-doloríferos, antibacterianos, anti-inflamatórios, antifibróticos, estimula a epitelização, modula a angiogênese auxiliando o processo de reparo dos tecidos danificados. Clinicamente, até 1940 seu uso era limitado devido à falta de protocolos ideais para processamento e armazenamento, até que a partir de 1995, com novos métodos de preservação, seu uso clínico expandiu na oftalmologia, em queimaduras, na reconstrução de vagina, defeitos da faringe e mucosa oral, nas úlceras de pés diabéticos, prevenção de adesões pós-operatórias e reparo de feridas em geral. Para as aplicações, a MA é obtida de cesárias eletivas, após o consentimento da gestante e após os exames sorológicos negativos para HIV-1 e 2, hepatite B e C, e sífilis, assim como a ausência de histórico de Covid-19. Em seguida, a MA é criopreservada, método que permite seu armazenamento e esterilização, visando à qualidade e segurança. Conclusão: As propriedades da MA são devidas aos seus componentes, como citocinas, fatores de crescimento, fator imunossupressor e proteínas estruturais, como o colágeno. Graças a elas existem múltiplas aplicações da membrana na MR. Nos últimos 5 anos a maior frequência foi na dermatologia, ortopedia, oftalmologia, odontologia e urologia. Ademais, apresenta grande disponibilidade, processamento de baixa complexidade e baixo custo.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii