Gotowa bibliografia na temat „Urban hydiene”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Urban hydiene”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Urban hydiene"

1

Qi, Huiqing, Shengli Tan i Zhichao Li. "Anisotropic Weighted Total Variation Feature Fusion Network for Remote Sensing Image Denoising". Remote Sensing 14, nr 24 (12.12.2022): 6300. http://dx.doi.org/10.3390/rs14246300.

Pełny tekst źródła
Streszczenie:
Remote sensing images are widely applied in instance segmentation and objetive recognition; however, they often suffer from noise, influencing the performance of subsequent applications. Previous image denoising works have only obtained restored images without preserving detailed texture. To address this issue, we proposed a novel model for remote sensing image denoising, called the anisotropic weighted total variation feature fusion network (AWTVF2Net), consisting of four novel modules (WTV-Net, SOSB, AuEncoder, and FB). AWTVF2Net combines traditional total variation with a deep neural network, improving the denoising ability of the proposed approach. Our proposed method is evaluated by PSNR and SSIM metrics on three benchmark datasets (NWPU, PatternNet, UCL), and the experimental results show that AWTVF2Net can obtain 0.12∼19.39 dB/0.0237∼0.5362 higher on PSNR/SSIM values in the Gaussian noise removal and mixed noise removal tasks than State-of-The-Art (SoTA) algorithms. Meanwhile, our model can preserve more detailed texture features. The SSEQ, BLIINDS-II, and BRISQUE values of AWTVF2Net on the three real-world datasets (AVRIS Indian Pines, ROSIS University of Pavia, HYDICE Urban) are 3.94∼12.92 higher, 8.33∼27.5 higher, and 2.2∼5.55 lower than those of the compared methods, respectively. The proposed framework can guide subsequent remote sensing image applications, regarding the pre-processing of input images.
Style APA, Harvard, Vancouver, ISO itp.
2

Alkhatib, Mohammed Q., i Miguel Velez-Reyes. "Improved Spatial-Spectral Superpixel Hyperspectral Unmixing". Remote Sensing 11, nr 20 (13.10.2019): 2374. http://dx.doi.org/10.3390/rs11202374.

Pełny tekst źródła
Streszczenie:
In this paper, an unsupervised unmixing approach based on superpixel representation combined with regional partitioning is presented. A reduced-size image representation is obtained using superpixel segmentation where each superpixel is represented by its mean spectra. The superpixel image representation is then partitioned into regions using quadtree segmentation based on the Shannon entropy. Spectral endmembers are extracted from each region that corresponds to a leaf of the quadtree and combined using clustering into endmember classes. The proposed approach is tested and validated using the HYDICE Urban and ROSIS Pavia data sets. Different levels of qualitative and quantitative assessments are performed based on the available reference data. The proposed approach is also compared with global (no-regional quadtree segmentation) and with pixel-based (no-superpixel representation) unsupervised unmixing approaches. Qualitative assessment was based primarily on agreement with spatial distribution of materials obtained from a reference classification map. Quantitative assessment was based on comparing classification maps generated from abundance maps using winner takes it all with a 50% threshold and a reference classification map. High agreement with the reference classification map was obtained by the proposed approach as evidenced by high kappa values (over 70%). The proposed approach outperforms global unsupervised unmixing approaches with and without superpixel representation that do not account for regional information. The agreement performance of the proposed approach is slightly better when compared to the pixel-based approached using quadtree segmentation. However, the proposed approach resulted in significant computational savings due to the use of the superpixel representation.
Style APA, Harvard, Vancouver, ISO itp.
3

Guo, Huinan, Hua Wang, Xiaodong Song i Zhongling Ruan. "Anomaly Detection of Remote Sensing Images Based on the Channel Attention Mechanism and LRX". Applied Sciences 13, nr 12 (9.06.2023): 6988. http://dx.doi.org/10.3390/app13126988.

Pełny tekst źródła
Streszczenie:
Anomaly detection of remote sensing images has gained significant attention in remote sensing image processing due to their rich spectral information. The Local RX (LRX) algorithm, derived from the Reed–Xiaoli (RX) algorithm, is a hyperspectral anomaly detection method that focuses on identifying anomalous pixels in hyperspectral images by exploiting local statistics and background modeling. However, it is still susceptible to the noises in the Hyperspectral Images (HSIs), which limits its detection performance. To address this problem, a hyperspectral anomaly detection algorithm based on channel attention mechanism and LRX is proposed in this paper. The HSI is feed into the auto-encoder network that is constrained by the channel attention module to generate a more representative reconstructed image that better captures the characteristics of different land covers and has less noises. The channel attention module in the auto-encoder network aims to explore the effective spectral bands corresponding to different land covers. Subsequently, the LRX algorithm is utilized for anomaly detection on the reconstructed image obtained from the auto-encoder network with the channel attention mechanism, which avoids the influence of noises on the anomaly detection results and improves the anomaly detection performance. The experiments are conducted on three HSIs to verify the performance of the proposed method. The proposed hyperspectral anomaly detection method achieves higher Area Under Curve (AUC) values of 0.9871, 0.9916 and 0.9642 on HYDICE urban dataset, AVIRIS aircraft dataset and Salinas Valley dataset, respectively, compared with other six methods. The experimental results demonstrate that the proposed algorithm has better anomaly detection performance than LRX and other algorithms.
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Urban hydiene"

1

Kumar, Amit. "Hazard rating of municipal solid waste (MSW) dumps considering potential for contamination of air, surface water and groundwater". Thesis, IIT Delhi, 2016. http://localhost:8080/iit/handle/2074/7087.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Urban hydiene"

1

Kalman, Linda S., i Edward M. Bassett III. "Classification and material identification in an urban environment using HYDICE hyperspectral data". W Optical Science, Engineering and Instrumentation '97, redaktorzy Michael R. Descour i Sylvia S. Shen. SPIE, 1997. http://dx.doi.org/10.1117/12.283843.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii