Rozprawy doktorskie na temat „Unmanned Aerial Vehicles Flight Control”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych rozpraw doktorskich naukowych na temat „Unmanned Aerial Vehicles Flight Control”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj rozprawy doktorskie z różnych dziedzin i twórz odpowiednie bibliografie.
Peddle, Iain Kenneth. "Acceleration based manoeuvre flight control system for Unmanned Aerial Vehicles /". Link to the online version, 2008. http://hdl.handle.net/10019/1425.
Pełny tekst źródłaPeddle, Iain K. "Acceleration based manoeuvre flight control system for unmanned aerial vehicles". Thesis, Stellenbosch : Stellenbosch University, 2008. http://hdl.handle.net/10019.1/1172.
Pełny tekst źródłaA strategy for the design of an effective, practically feasible, robust, computationally efficient autopilot for three dimensional manoeuvre flight control of Unmanned Aerial Vehicles is presented. The core feature of the strategy is the design of attitude independent inner loop acceleration controllers. With these controllers implemented, the aircraft is reduced to a point mass with a steerable acceleration vector when viewed from an outer loop guidance perspective. Trajectory generation is also simplified with reference trajectories only required to be kinematically feasible. Robustness is achieved through uncertainty encapsulation and disturbance rejection at an acceleration level. The detailed design and associated analysis of the inner loop acceleration controllers is carried out for the case where the airflow incidence angles are small. For this case it is shown that under mild practically feasible conditions the inner loop dynamics decouple and become linear, thereby allowing the derivation of closed form pole placement solutions. Dimensional and normalised non-dimensional time variants of the inner loop controllers are designed and their respective advantages highlighted. Pole placement constraints that arise due to the typically weak non-minimum phase nature of aircraft dynamics are developed. A generic, aircraft independent guidance control algorithm, well suited for use with the inner loop acceleration controllers, is also presented. The guidance algorithm regulates the aircraft about a kinematically feasible reference trajectory. A number of fundamental basis trajectories are presented which are easily linkable to form complex three dimensional manoeuvres. Results from simulations with a number of different aircraft and reference trajectories illustrate the versatility and functionality of the autopilot. Key words: Aircraft control, Autonomous vehicles, UAV flight control, Acceleration control, Aircraft guidance, Trajectory tracking, Manoeuvre flight control.
Drozeski, Graham R. "A Fault-Tolerant Control Architecture for Unmanned Aerial Vehicles". Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/7523.
Pełny tekst źródłaPietersen, Willem Hermanus. "System identification for fault tolerant control of unmanned aerial vehicles". Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/4164.
Pełny tekst źródłaENGLISH ABSTRACT: In this project, system identification is done on the Modular Unmanned Aerial Vehicle (UAV). This is necessary to perform fault detection and isolation, which is part of the Fault Tolerant Control research project at Stellenbosch University. The equations necessary to do system identification are developed. Various methods for system identification is discussed and the regression methods are implemented. It is shown how to accommodate a sudden change in aircraft parameters due to a fault. Smoothed numerical differentiation is performed in order to acquire data necessary to implement the regression methods. Practical issues regarding system identification are discussed and methods for addressing these issues are introduced. These issues include data collinearity and identification in a closed loop. The regression methods are implemented on a simple roll model of the Modular UAV in order to highlight the various difficulties with system identification. Different methods for accommodating a fault are illustrated. System identification is also done on a full nonlinear model of the Modular UAV. All the parameters converges quickly to accurate values, with the exception of Cl R , CnP and Cn A . The reason for this is discussed. The importance of these parameters in order to do Fault Tolerant Control is also discussed. An S-function that implements the recursive least squares algorithm for parameter estimation is developed. This block accommodates for the methods of applying the forgetting factor and covariance resetting. This block can be used as a stepping stone for future work in system identification and fault detection and isolation.
AFRIKAANSE OPSOMMING: In hierdie projek word stelsel identifikasie gedoen op die Modulêre Onbemande Vliegtuig. Dit is nodig om foutopsporing en isolasie te doen wat ’n deel uitmaak van fout verdraagsame beheer. Die vergelykings wat nodig is om stelsel identifikasie te doen is ontwikkel. Verskeie metodes om stelsel identifikasie te doen word bespreek en die regressie metodes is uitgevoer. Daar word gewys hoe om voorsiening te maak vir ’n skielike verandering in die vliegtuig parameters as gevolg van ’n fout. Reëlmatige numeriese differensiasie is gedoen om data te verkry wat nodig is vir die uitvoering van die regressie metodes. Praktiese kwessies aangaande stelsel identifikasie word bespreek en metodes om hierdie kwessies aan te spreek word gegee. Hierdie kwessies sluit interafhanklikheid van data en identifikasie in ’n geslote lus in. Die regressie metodes word toegepas op ’n eenvoudige rol model van die Modulêre Onbemande Vliegtuig om die verskeie kwessies aangaande stelsel identifikasie uit te wys. Verskeie metodes vir die hantering vir ’n fout word ook illustreer. Stelsel identifikasie word ook op die volle nie-lineêre model van die Modulêre Onbemande Vliegtuig gedoen. Al die parameters konvergeer vinnig na akkurate waardes, met die uitsondering van Cl R , CnP and Cn A . Die belangrikheid van hierdie parameters vir fout verdraagsame beheer word ook bespreek. ’n S-funksie blok vir die rekursiewe kleinste-kwadraat algoritme is ontwikkel. Hierdie blok voorsien vir die metodes om die vergeetfaktor en kovariansie herstelling te implementeer. Hierdie blok kan gebruik word vir toekomstige werk in stelsel identifikasie en foutopsporing en isolasie.
Karlsson, Mia. "Control of Unmanned Aerial Vehicles using Non-linear Dynamic Inversion". Thesis, Linköping University, Department of Electrical Engineering, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-1519.
Pełny tekst źródłaThis master's thesis deals with the control design method called Non-linear Dynamic Inversion (NDI) and how it can be applied to Unmanned Aerial Vehicles (UAVs). In this thesis, simulations are conducted using a model for the unmanned aerial vehicle SHARC (Swedish Highly Advanced Research Configuration), which Saab AB is developing.
The idea with NDI is to cancel the non-linear dynamics and then the system can be controlled as a linear system. This design method needs much information about the system, or the output will not be as desired. Since it is impossible to know the exact mathematical model of a system, some kind of robust control theory is needed. In this thesis integral action is used.
A problem with NDI is that the mathematical model of a system is often very complex, which means that the controller also will be complex. Therefore, a controller that uses pure NDI is only discussed, and the simulations are instead based on approximations that use a cascaded NDI. Two such methods are investigated. One that uses much information from aerodata tables, and one that uses the derivatives of some measured outputs. Both methods generate satisfying results. The outputs from the second method are more oscillatory but the method is found to be more robust. If the signals are noisy, indications are that method one will be better.
De, Hart Ruan Dirk. "Advanced take-off and flight control algorithms for fixed wing unmanned aerial vehicles". Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/4179.
Pełny tekst źródłaENGLISH ABSTRACT: This thesis presents the development and implementation of a position based kinematic guidance system, the derivation and testing of a Dynamic Pursuit Navigation algorithm and a thorough analysis of an aircraft’s runway interactions, which is used to implement automated take-off of a fixed wing UAV. The analysis of the runway is focussed on the aircraft’s lateral modes. Undercarriage and aerodynamic effects are first analysed individually, after which the combined system is analysed. The various types of feedback control are investigated and the best solution suggested. Supporting controllers are designed and combined to successfully implement autonomous take-off, with acceleration based guidance. A computationally efficient position based kinematic guidance architecture is designed and implemented that allows a large percentage of the flight envelope to be utilised. An airspeed controller that allows for aggressive flight is designed and implemented by applying Feedback Linearisation techniques. A Dynamic Pursuit Navigation algorithm is derived that allows following of a moving ground based object at a constant distance (radius). This algorithm is implemented and verified through non-linear simulation.
AFRIKAANSE OPSOMMING: Hierdie tesis handel oor die ontwikkeling en toepassing van posisie-afhanklike, kinematiese leidings-algoritmes, die ontwikkeling van ’n Dinamiese Volgings-navigasie-algoritme en ’n deeglike analise van die interaksie van ’n lugraam met ’n aanloopbaan sodat outonome opstygprosedure van ’n vastevlerk vliegtuig bewerkstellig kan word. Die bogenoemde analise het gefokus op die laterale modus van ’n vastevlerk vliegtuig en is tweeledig behartig. Die eerste gedeelte het gefokus op die analise van die onderstel, terwyl die lugraam en die aerodinamiese effekte in die tweede gedeelte ondersoek is. Verskillende tipes terugvoerbeheer vir die outonome opstygprosedure is ondersoek om die mees geskikte tegniek te bepaal. Addisionele beheerders, wat deur die versnellingsbeheer gebaseerde opstygprosedure benodig word, is ontwerp. ’n Posisie gebaseerde kinematiese leidingsbeheerstruktuur om ’n groot persentasie van die vlugvermoë te benut, is ontwikkel. Terugvoer linearisering is toegepas om ’n lugspoedbeheerder , wat in staat is tot aggressiewe vlug, te ontwerp. ’n Dinamiese Volgingsnavigasie-algoritme wat in staat is om ’n bewegende grondvoorwerp te volg, is ontwikkel. Hierdie algoritme is geïmplementeer en bevestig deur nie-lineêre simulasie.
Kang, Keeryun. "Online optimal obstacle avoidance for rotary-wing autonomous unmanned aerial vehicles". Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44820.
Pełny tekst źródłaGrymin, David J. "Development of a novel method for autonomous navigation and landing of unmanned aerial vehicles /". Online version of thesis, 2009. http://hdl.handle.net/1850/10615.
Pełny tekst źródłaKriel, Steven Cornelius. "A comparison of control systems for the flight transition of VTOL unmanned aerial vehicles". Thesis, Link to the online version, 2008. http://hdl.handle.net/10019/1334.
Pełny tekst źródłaWard, Garrett. "Design of a Small Form-Factor Flight Control System". VCU Scholars Compass, 2014. http://scholarscompass.vcu.edu/etd/3448.
Pełny tekst źródłaCasey, Julian L. "Analytical approach to multi-objective joint inference control for fixed wing unmanned aerial vehicles". Wright State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=wright160431245463856.
Pełny tekst źródłaPuttige, Vishwas Ramadas Engineering & Information Technology Australian Defence Force Academy UNSW. "Neural network based adaptive control for autonomous flight of fixed wing unmanned aerial vehicles". Awarded by:University of New South Wales - Australian Defence Force Academy. Engineering & Information Technology, 2009. http://handle.unsw.edu.au/1959.4/43736.
Pełny tekst źródłaAcuna, Virgilio. "Using Unmanned Aerial Vehicles for Wireless Localization in Search and Rescue". FIU Digital Commons, 2017. https://digitalcommons.fiu.edu/etd/3646.
Pełny tekst źródłaHough, Willem J. "Autonomous aerobatic flight of a fixed wing unmanned aerial vehicle". Thesis, Link to online version, 2007. http://hdl.handle.net/10019/428.
Pełny tekst źródłaZhou, Yan. "Development of a data collection system for small Unmanned Aerial Vehicles (UAVs)". Thesis, Cape Peninsula University of Technology, 2011. http://hdl.handle.net/20.500.11838/1299.
Pełny tekst źródłaThis paper presents the development of a data collection system for a small unmanned Aerial Vehicle (UAV) flight. The following three facets comprise of a UAV system: (1) a UAV aircraft; (2) onboard avionics; and (3) a ground control station subsystem (Taha et al., 2010:1). In this project, the UAV aircraft is based on the low-cost autonomous quad-rotator system named “Arducopter Quad”, where the onboard avionic system utilizes both an ArduPilot Mega (APM) on-board controller and IMU sensor shield, while the “Mission Planner” software operates as GCS software to gather essential flight data (Xiang & Tian, 2011:176). The approach provides the UAV system structure and both hardware and software with a small UAV data collection system, which is examined throughout the study. And introduce the concept of Arducopter dynamics for better understanding with its flight control. The study also considers the communication process between the UAV and the ground control station. The radio wave is an important aspect in the UAV data collection system (Austin, 2010:143). The literature review introduced the basis of the radio wave in respect of its travelling speed, and its characteristics of propagation, including how different frequencies will affect radio wave propagation. The aim of this project was to develop a platform for a small UAV real-time data collection system. The pendulum system was involved to simulate the “Roll” movement of the small UAV, while real-time IMU sensor data was successfully collected at ground control station (GCS), both serial communication and wireless communication, which was applied in the data collection process. The microwave generator interference test proves that the 2.4 GHz XBee module is capable of establishing reliable indoor communication between the APM controller and the GCS. The work of this project is towards development of additional health monitoring technology to prevent the safety issue of the small UAV. The data collection system can be used as basis for the future research of real-time health monitoring for various small UAVs.
Gaum, Dunross Rudi. "Agressive flight control techniques for a fixed wing unmanned aerial vehicle". Stellenbosch : University of Stellenbosch, 2009. http://hdl.handle.net/10019.1/3112.
Pełny tekst źródłaThis thesis investigates aggressive all-attitude flight control systems. These are flight controllers capable of controlling an aircraft at any attitude and will enable the autonomous execution of manoeuvres such as high bank angle turns, steep climbs and aerobatic flight manoeuvres. This class of autopilot could be applied to carry out evasive combat manoeuvres or to create more efficient and realistic target drones. A model for the aircraft’s dynamics is developed in such a way that its high bandwidth specific force and moment model is split from its lower bandwidth kinematic model. This split is done at the aircraft’s specific acceleration and roll rate, which enables the design of simple, decoupled, linear attitude independent inner loop controllers to regulate these states. Two outer loop kinematic controllers are then designed to interface with these inner loop controllers to guide the aircraft through predefined reference trajectories. The first method involves the design of a linear quadratic regulator (LQR) based on the successively linearised kinematics, to optimally control the system. The second method involves specific acceleration matching (SAM) and results in a linear guidance controller that makes use of position based trajectories. These position based trajectories allow the aircraft’s velocity magnitude to be regulated independently of the trajectory tracking. To this end, two velocity regulation algorithms were developed. These involved methods of optimal control, implemented using dynamic programming, and energy analysis to regulate the aircraft’s velocity in a predictive manner and thereby providing significantly improved velocity regulation during aggressive aerobatic type manoeuvres. Hardware in the loop simulations and practical flight test data verify the theoretical results of all controllers presented
Doepke, Edward Brady. "DESIGN AND FLIGHT TESTING OF A WARPING WING FOR AUTONOMOUS FLIGHT CONTROL". UKnowledge, 2012. http://uknowledge.uky.edu/me_etds/20.
Pełny tekst źródłaSleeman, William Clifford IV. "The Development of a Linux and FPGA Based Autopilot System for Unmanned Aerial Vehicles". VCU Scholars Compass, 2007. http://scholarscompass.vcu.edu/etd_retro/129.
Pełny tekst źródłaKarakas, Deniz. "Nonlinear Modeling And Flight Control System Design Of An Unmanned Aerial Vehicle". Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/3/12608926/index.pdf.
Pełny tekst źródła/Simulink®
environment is developed by taking into consideration all the possible major system components such as actuators, gravity, engine, atmosphere, wind-turbulence models, as well as the aerodynamics components in the 6 DOF equations of motion. Trim and linearization of the developed nonlinear model are accomplished and various related analyses are carried out. The model is validated by comparing with a similar UAV data in terms of open loop dynamic stability characteristics. Using two main approaches
namely, classical and optimal, linear controllers are designed. For the classical approach, Simulink Response Optimization (SRO) tool of MATLAB®
/Simulink®
is utilized, whereas for the optimal controller approach, linear quadratic (LQ) controller design method is implemented, again by the help of the tools put forth by MATLAB®
. The controllers are designed for control of roll, heading, coordinated turn, flight path, pitch, altitude, and airspeed, i.e., for the achievement of all low-level control functions. These linear controllers are integrated into the nonlinear model, by carrying out gain scheduling with respect to airspeed and altitude, controller input linearization regarding the perturbed states and control inputs, and anti integral wind-up scheme regarding the possible wind-up of the integrators in the controller structures. The responses of the nonlinear model controlled with the two controllers are compared based on the military flight control requirements. The advantages and disadvantages of these two frequently used controllers in industry are investigated and discussed. These results are to be evaluated by the designers themselves based on the design criteria of a project that is worked on.
Techy, Laszlo. "Flight Vehicle Control and Aerobiological Sampling Applications". Diss., Virginia Tech, 2009. http://hdl.handle.net/10919/29680.
Pełny tekst źródłaPh. D.
Ducard, Guillaume Jacques Joseph. "Fault-tolerant flight control and guidance systems for a small unmanned aerial vehicle /". Zürich : ETH, 2007. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=17505.
Pełny tekst źródłaBlaauw, Deon. "Flight control system for a variable stability blended-wing-body unmanned aerial vehicle". Thesis, Stellenbosch : University of Stellenbosch, 2009. http://hdl.handle.net/10019.1/2297.
Pełny tekst źródłaThis thesis presents the analysis, design, simulation and practical implementation of a novel control system for a variable stability blended-wing-body unmanned aerial vehicle. The aircraft has a moveable centre of mass that allows it to operate in an aerodynamically optimised minimum drag configuration during cruise flight. The primary purpose of the control system is thus to regain nominal static stability for all centre of mass positions, and then to further regulate motion variables for autonomous way point navigation. A thorough analysis of the parameters affected by the varying centre of mass position leads to the identification of the main control problem. It is shown that a recently published acceleration based control methodology can be used with minor modification to elegantly solve the variable stability control problem. After providing the details of the control system design, the customised avionics used for their practical implementation are presented. The results of extensive hardware in the loop simulations verify the functionality of the controllers. Finally, flight test results illustrate the practical success of the autopilot and clearly show how the control system is capable of controlling the variable stability aircraft at centre of mass locations where a human pilot could not.
Hayes, Edwin Laurie. "Machine Learning for Intelligent Control: Application of Reinforcement Learning Techniques to the Development of Flight Control Systems for Miniature UAV Rotorcraft". Thesis, University of Canterbury. Department of Mechanical Engineering, 2013. http://hdl.handle.net/10092/7810.
Pełny tekst źródłaMercado-Ravell, Diego Alberto. "Autonomous navigation and teleoperation of unmanned aerial vehicles using monocular vision". Thesis, Compiègne, 2015. http://www.theses.fr/2015COMP2239/document.
Pełny tekst źródłaThe present document addresses, theoretically and experimentally, the most relevant topics for Unmanned Aerial Vehicles (UAVs) in autonomous and semi-autonomous navigation. According with the multidisciplinary nature of the studied problems, a wide range of techniques and theories are covered in the fields of robotics, automatic control, computer science, computer vision and embedded systems, among others. As part of this thesis, two different experimental platforms were developed in order to explore and evaluate various theories and techniques of interest for autonomous navigation. The first prototype is a quadrotor specially designed for outdoor applications and was fully developed in our lab. The second testbed is composed by a non expensive commercial quadrotor kind AR. Drone, wireless connected to a ground station equipped with the Robot Operating System (ROS), and specially intended to test computer vision algorithms and automatic control strategies in an easy, fast and safe way. In addition, this work provides a study of data fusion techniques looking to enhance the UAVs pose estimation provided by commonly used sensors. Two strategies are evaluated in particular, an Extended Kalman Filter (EKF) and a Particle Filter (PF). Both estimators are adapted for the system under consideration, taking into account noisy measurements of the UAV position, velocity and orientation. Simulations show the performance of the developed algorithms while adding noise from real GPS (Global Positioning System) measurements. Safe and accurate navigation for either autonomous trajectory tracking or haptic teleoperation of quadrotors is presented as well. A second order Sliding Mode (2-SM) control algorithm is used to track trajectories while avoiding frontal collisions in autonomous flight. The time-scale separation of the translational and rotational dynamics allows us to design position controllers by giving desired references in the roll and pitch angles, which is suitable for quadrotors equipped with an internal attitude controller. The 2-SM control allows adding robustness to the closed-loop system. A Lyapunov based analysis probes the system stability. Vision algorithms are employed to estimate the pose of the vehicle using only a monocular SLAM (Simultaneous Localization and Mapping) fused with inertial measurements. Distance to potential obstacles is detected and computed using the sparse depth map from the vision algorithm. For teleoperation tests, a haptic device is employed to feedback information to the pilot about possible collisions, by exerting opposite forces. The proposed strategies are successfully tested in real-time experiments, using a low-cost commercial quadrotor. Also, conception and development of a Micro Aerial Vehicle (MAV) able to safely interact with human users by following them autonomously, is achieved in the present work. Once a face is detected by means of a Haar cascade classifier, it is tracked applying a Kalman Filter (KF), and an estimation of the relative position with respect to the face is obtained at a high rate. A linear Proportional Derivative (PD) controller regulates the UAV’s position in order to keep a constant distance to the face, employing as well the extra available information from the embedded UAV’s sensors. Several experiments were carried out through different conditions, showing good performance even under disadvantageous scenarios like outdoor flight, being robust against illumination changes, wind perturbations, image noise and the presence of several faces on the same image. Finally, this thesis deals with the problem of implementing a safe and fast transportation system using an UAV kind quadrotor with a cable suspended load. The objective consists in transporting the load from one place to another, in a fast way and with minimum swing in the cable
Stepanyan, Vahram. "Vision Based Guidance and Flight Control in Problems of Aerial Tracking". Diss., Virginia Tech, 2006. http://hdl.handle.net/10919/28659.
Pełny tekst źródłaPh. D.
Di, Long. "Cognitive Formation Flight in Multi-Unmanned Aerial Vehicle-Based Personal Remote Sensing Systems". DigitalCommons@USU, 2011. https://digitalcommons.usu.edu/etd/985.
Pełny tekst źródłaMasango, Thubalakhe Patrick. "Condition monitoring of a wing structure for an unmanned aerial vehicle (UAV)". Thesis, Cape Peninsula University of Technology, 2015. http://hdl.handle.net/20.500.11838/2384.
Pełny tekst źródłaCurrently non-destructive testing techniques for composite aircraft structures are disadvantaged when compared to online Structural Health Monitoring (SHM) systems that monitor the structure while in-service and give real time data. The present research work looks at developing a protocol for online structural health monitoring of a UAV wing structure using PVDF film sensors, especially including the monitoring of structural changes caused by defects. Different types of SHM techniques were studied in relation to carbon fibre composites. Laminate composite make-up and manufacturing process was investigated and vacuum infusion process was used to manufacture the samples that resemble the Guardian II wing structure, then the three-point bending test was used to determine the material properties. Digital Shearography was employed as a stationery non-destructive technique to determine the sensor to structure attachment, type and position of defects that affect the state of performance. Finite Element Analysis (FEA) was done using ANSYS Workbench which served as a modelling tool using a drawing imported from Solid-works. Experimental investigation was done using PVDF sensor embedded on the surface of the sample in a cantilever setup and a vertical Vernier scale to measure the deflection due to impact and vibration loading. A Fluke-View oscilloscope was used as a data logger when the measurement of the output voltage and the natural frequency were recorded. The techniques of using FEA and experimental investigation were then compared. The findings of this study showed that the PVDF sensor is suitable for condition monitoring of a UAV wing structure.
Gonzalez, Castro Luis Nicolas. "Coherent design of uninhabited aerial vehicle operations and control stations". Thesis, Available online, Georgia Institute of Technology, 2006, 2006. http://etd.gatech.edu/theses/available/etd-05182006-172951/.
Pełny tekst źródłaFlood, Christopher H. "Design and evaluation of a digital flight control system for the Frog Unmanned Aerial Vehicle". Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2001. http://handle.dtic.mil/100.2/ADA397294.
Pełny tekst źródłaThesis adviso(s): Kaminer, Isaac I. "September 2001." Includes bibliographical references (p. 113). Also Available online.
Svanfeldt, Mårten. "Design of the hardware platform for the flight control system in an unmanned aerial vehicle". Thesis, Linköping University, Electronics System, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-58985.
Pełny tekst źródłaBrynestad, Mark A. "Investigation of the flight control requirements of a half-scale ducted fan Unmanned Aerial Vehicle". Thesis, Monterey, Calif. : Naval Postgraduate School, 1992. http://handle.dtic.mil/100.2/ADA252730.
Pełny tekst źródłaThesis Advisor: Howard, Richard M. "March, 1992." Description based on title screen as viewed on March 10, 2009. Includes bibliographical references (p. 75-76). Also available in print.
Lim, Bock-Aeng. "Design and rapid prototyping of flight control and navigation system for an unmanned aerial vehicle". Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2002. http://sirsi.nps.navy.mil/uhtbin/hyperion-image/02Mar%5FLimBA.pdf.
Pełny tekst źródłaMarchini, Brian Decimo. "Adaptive Control Techniques for Transition-to-Hover Flight of Fixed-Wing UAVs". DigitalCommons@CalPoly, 2013. https://digitalcommons.calpoly.edu/theses/1108.
Pełny tekst źródłaSmit, Samuel Jacobus Adriaan. "Autonomous landing of a fixed-wing unmanned aerial vehicle using differential GPS". Thesis, Stellenbosch : Stellenbosch University, 2013. http://hdl.handle.net/10019.1/80122.
Pełny tekst źródłaENGLISH ABSTRACT: This dissertation presents the design and practical demonstration of a flight control system (FCS) that is capable of autonomously landing a fixed-wing, unmanned aerial vehicle (UAV) on a stationary platform aided by a high-precision differential global positioning system. This project forms part of on-going research with the end goal of landing a fixed-wing UAV on a moving platform (for example a ship’s deck) in windy conditions. The main aim of this project is to be able to land the UAV autonomously, safely and accurately on the runway. To this end, an airframe was selected and equipped with an avionics payload. The equipped airframe’s stability derivatives were analysed via AVL and the moment of inertia was determined by the double pendulum method. The aircraft model was developed in such a way that the specific force and moment model (high bandwidth) is split from the point-mass dynamics of the aircraft (low bandwidth) [1]. The advantage of modelling the aircraft according to this unique method, results in a design that has simple decoupled linear controllers. The inner-loop controllers control the high-bandwidth specific accelerations and roll-rate, while the outer-loop controllers control the low-bandwidth point-mass dynamics. The performance of the developed auto-landing flight control system was tested in software-in-the-loop (SIL) and hardware-in-the-loop (HIL) simulations. A Monte Carlo non-linear landing simulation analysis showed that the FCS is expected to land the aircraft 95% of the time within a circle with a diameter of 1.5m. Practical flight tests verified the theoretical results of the developed controllers and the project was concluded with five autonomous landings. The aircraft landed within a circle with a 7.5m radius with the aiming point at the centre of the circle. In the practical landings the longitudinal landing error dominated the landing performance of the autonomous landing system. The large longitudinal error resulted from a climb rate bias on the estimated climb rate and a shallow landing glide slope.
AFRIKAANSE OPSOMMING: Hierdie skripsie stel die ontwikkeling en praktiese demonstrasie van ʼn self-landdende onbemande vastevlerkvliegtuigstelsel voor, wat op ʼn stilstaande platform te lande kan kom met behulp van ʼn uiters akkurate globale posisionering stelsel. Die projek maak deel uit van ʼn groter projek, waarvan die doel is om ʼn onbemande vastevlerkvliegtuig op ʼn bewegende platform te laat land (bv. op ʼn boot se dek) in onstuimige windtoestande. Die hoofdoel van die projek was om die vliegtuig so akkuraat as moontlik op die aanloopbaan te laat land. ʼn Vliegtuigraamwerk is vir dié doel gekies wat met gepaste avionica uitgerus is. Die uitgeruste vliegtuig se aerodinamsie eienskappe was geanaliseer met AVL en die traagheidsmoment is deur die dubbelependulum metode bepaal. Die vliegtuigmodel is op so ‘n manier onwikkel om [1] die spesifieke krag en momentmodel (vinnige reaksie) te skei van die puntmassadinamiek (stadige reaksie). Die voordeel van hierdie wyse van modulering is dat eenvoudige ontkoppelde beheerders ontwerp kon word. Die binnelusbeheerders beheer die vinnige reaksie-spesifieke versnellings en die rol tempo van die vliegtuig. Die buitelusbeheerders beheer die stadige reaksie puntmassa dinamiek. Die vliegbeheerstelsel is in sagteware-in-die-lus en hardeware-in-die-lus simulasies getoets. Die vliegtuig se landingseienskappe is ondersoek deur die uitvoer van Monte Carlo simulasies, die simulasie resultate wys dat die vliegtuig 95% van die tyd binne in ʼn sirkel met ʼn diameter van 1.5m geland het. Praktiese vlugtoetse het bevestig dat die teoretiese uitslae en die prakties uitslae ooreenstem. Die vliegtuig het twee suksesvolle outomatiese landings uitgevoer, waar dit binne ʼn 7.5m-radius sirkel geland het, waarvan die gewenste landingspunt die middelpunt was. In die outomatiese landings is die longitudinale landingsfout die grootse. Die groot longitudinale landingsfout is as gevolg van ʼn afset op die afgeskatte afwaartse spoed en ʼn lae landings gradiënt.
Thamann, Michael. "AERODYNAMICS AND CONTROL OF A DEPLOYABLE WING UAV FOR AUTONOMOUS FLIGHT". UKnowledge, 2012. http://uknowledge.uky.edu/me_etds/18.
Pełny tekst źródłaElmore, Joel D. "Design of an All-In-One Embedded Flight Control System". VCU Scholars Compass, 2015. http://scholarscompass.vcu.edu/etd/3981.
Pełny tekst źródłaKhakimbayev, Jasur S. "Development of integrated 3D terrain maps for Unmanned Aerial Vehicle (UAV) Flight and Mission Control Support System (FMCSS)". Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2006. http://library.nps.navy.mil/uhtbin/hyperion/06Mar%5FKhakimbayev.pdf.
Pełny tekst źródłaThesis Advisor(s): Wolfgang Baer, Curtis L. Blais. "March 2006." Includes bibliographical references (p.99-101). Also available online.
Basson, Lionel. "Control allocation as part of a fault-tolerant control architecture for UAVs". Thesis, Stellenbosch : University of Stellenbosch, 2011. http://hdl.handle.net/10019.1/6722.
Pełny tekst źródłaENGLISH ABSTRACT: The development of a control allocation system for use as part of a fault-tolerant control (FTC) system in unmanned aerial vehicles (UAVs) is presented. This system plays a vital role in minimising the possibility that a fault will necessitate the reconfiguration of the control, guidance or navigation systems of the aircraft by minimising the difference between the desired and achievable aircraft performance parameters. This is achieved by optimising the allocation of control effort commanded by the virtual actuators to the physical actuators present on the aircraft. A simple general six degree of freedom aircraft model is presented that contains all of the relevant terms needed to find the trim biases of the aircraft actuators and evaluate the performance of the virtual actuators. This model was used to develop a control allocation formulation that optimises the performance of the virtual actuators of the aircraft while minimising adverse effects and avoiding actuator saturation. The resulting problem formulation was formulated as a multi-objective optimisation problem which was solved using the sequential quadratic programming method. The control allocation system was practically implemented and tested. A number of failure categories of varying severity were defined and two aircraft with different levels of actuator redundancy were used to test the system. The control allocation algorithm was evaluated for each failure category, aircraft test case and for a number of differing control allocation system configurations. A number of enhancements were then made to the control allocation system which included adding frequency-based allocation and adapting the algorithm for an unconventional ducted-fan UAV. The control allocation system is shown to be applicable to a number of different conventional aircraft configurations with no alterations as well as being applicable to unconventional aircraft with minor alterations. The control allocation system is shown to be capable of handling both single and multiple actuator failures and the importance of actuator redundancy is highlighted as a factor that influences the effectiveness of control allocation. The control allocation system can be effectively used as part of a FTC system or as a tool that can be used to investigate control allocation and aircraft redundancy.
AFRIKAANSE OPSOMMING: Die ontwikkeling van ’n beheertoekenning sisteem vir gebruik as deel van ’n fout verdraagsame beheersisteem in onbemande lugvaartuie word voorgelê. Hierdie sisteem speel ’n essensiële rol in die vermindering van die moontlikheid dat ’n fout die herkonfigurasie van die beheer, bestuur of navigasiesisteme van die vaartuig tot gevolg sal hê, deur die verskil te verminder tussen die verlangde en bereikbare werkverrigtingsraamwerk van die vaartuig. Dit word bereik deur die optimisering van die toekenning van beheerpoging aangevoer deur die virtuele aktueerders na die fisiese aktueerders teenwoordig op die vaartuig. ’n Eenvoudige algemene ses grade van vryheid lugvaartuig model word voorgestel wat al die relevante terme bevat wat benodig word om die onewewigtigheid verstelling van die vaartuig se aktueerders te vind en die werksverrigting van die virtuele aktueerders te evalueer. Hierdie model is gebruik om ’n beheer toekenning formulering te ontwikkel wat die werkverrigting van die virtuele aktueerders van die vaartuig optimiseer terwyl nadelige gevolge verminder word asook aktueerder versadiging vermy word. Die gevolglike probleem formulering is omskryf as ’n multi-doel optimiserings probleem wat opgelos is deur gebruik van die sekwensiële kwadratiese programmerings metode. Die beheertoekenning sisteem is prakties geïmplementeer en getoets. ’n Aantal fout kategorieë van verskillende grade van erns is gedefinieer en twee vaartuie met verskillende vlakke van aktueerder oortolligheid is gebruik om die sisteem te toets. Die beheer toekenning algoritme is geëvalueer vir elke fout kategorie, vaartuig toetsgeval, asook vir ’n aantal verskillende beheertoekenning sisteem konfigurasies. ’n Aantal verbeterings is aangebring aan die beheertoekenning sisteem, naamlik die toevoeging van frekwensie gebaseerde toekenning en wysiging van die algoritme vir ’n onkonvensionele onbemande geleide waaier lugvaartuig. Die beheertoekenning sisteem is van toepassing op ’n aantal verskillende konvensionele vaartuig konfigurasies met geen verstellings asook van toepassing op onkonvensionele vaartuie met geringe verstellings. Die beheertoekenning sisteem kan beide enkel- en veelvoudige aktueerder tekortkominge hanteer en die belangrikheid van aktueerder oortolligheid is beklemtoon as ’n faktor wat die effektiwiteit van beheertoekenning beïnvloed. Die beheertoekenning sisteem kan effektief geïmplementeer word as deel van ’n fout verdraagsame beheersisteem of as ’n werktuig om beheertoekenning en vaartuig oortolligheid te ondersoek.
SARTORI, DANIELE. "Design, Implementation and Testing of Advanced Control Laws for Fixed-wing UAVs". Doctoral thesis, Politecnico di Torino, 2014. http://hdl.handle.net/11583/2571146.
Pełny tekst źródłaHolt, Ryan S. "Three Enabling Technologies for Vision-Based, Forest-Fire Perimeter Surveillance Using Multiple Unmanned Aerial Systems". BYU ScholarsArchive, 2007. https://scholarsarchive.byu.edu/etd/931.
Pełny tekst źródłaSamal, Mahendra Engineering & Information Technology Australian Defence Force Academy UNSW. "Neural network based identification and control of an unmanned helicopter". Awarded by:University of New South Wales - Australian Defence Force Academy. Engineering & Information Technology, 2009. http://handle.unsw.edu.au/1959.4/43917.
Pełny tekst źródłaSattigeri, Ramachandra Jayant. "Adaptive Estimation and Control with Application to Vision-based Autonomous Formation Flight". Diss., Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/16272.
Pełny tekst źródłaCakir, Zeynep. "Development Of A Uav Testbed". Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613209/index.pdf.
Pełny tekst źródłaLizarraga, Mariano I. "Autonomous landing system for a UAV". Thesis, Monterey California. Naval Postgraduate School, 2004. http://hdl.handle.net/10945/1655.
Pełny tekst źródłaThis thesis is part of an ongoing research conducted at the Naval Postgraduate School to achieve the autonomous shipboard landing of Unmanned Aerial Vehicles (UAV). Two main problems are addressed in this thesis. The first is to establish communication between the UAV's ground station and the Autonomous Landing Flight Control Computer effectively. The second addresses the design and implementation of an autonomous landing controller using classical control techniques. Device drivers for the sensors and the communications protocol were developed in ANSI C. The overall system was implemented in a PC104 computer running a real-time operating system developed by The Mathworks, Inc. Computer and hardware in the loop (HIL) simulation, as well as ground test results show the feasibility of the algorithm proposed here. Flight tests are scheduled to be performed in the near future.
Lieutenant Junior Grade, Mexican Navy
Noonan, Andrea L. "Flight plan generation for unmanned aerial vehicles". Thesis, Manhattan, Kan. : Kansas State University, 2007. http://hdl.handle.net/2097/385.
Pełny tekst źródłaLawrance, Nicholas R. J. "Autonomous soaring flight for unmanned aerial vehicles". Thesis, The University of Sydney, 2011. https://hdl.handle.net/2123/21912.
Pełny tekst źródłaOstler, Jon N. "Flight Testing Small, Electric Powered Unmanned Aerial Vehicles". Diss., CLICK HERE for online access, 2006. http://contentdm.lib.byu.edu/ETD/image/etd1223.pdf.
Pełny tekst źródłaLarkan, Jessica. "Centralised control of unmanned aerial vehicles". Thesis, Larkan, Jessica (2018) Centralised control of unmanned aerial vehicles. Honours thesis, Murdoch University, 2018. https://researchrepository.murdoch.edu.au/id/eprint/44790/.
Pełny tekst źródłaHan, Chunyang. "Robust Control of Teleoperated Unmanned Aerial Vehicles". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-278212.
Pełny tekst źródłaI denna avhandling använder vi först tillgänglighetsteorin för att utveckla algoritmerför tillståndsförutsägelse under fördröjda tillstånds- eller utgångsmätningar. Därefterutvecklar kontrollstrategier för undvikande av kollision och spårning av UAV: er baseradepå de planerade algoritmerna och modellen förutsägbar kontrollteori. Slutligenpresenteras simuleringsresultat för att undvika kollision och problem med spårningav banan, för olika kommunikationsförseningar, med en UAV-modell med 6 frihetsgrader.
Poyi, Gwangtim Timothy. "A novel approach to the control of quad-rotor helicopters using fuzzy-neural networks". Thesis, University of Derby, 2014. http://hdl.handle.net/10545/337911.
Pełny tekst źródła