Gotowa bibliografia na temat „Unmanned Aerial Vehicles Flight Control”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Unmanned Aerial Vehicles Flight Control”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Unmanned Aerial Vehicles Flight Control"
KUTPANOVA, Zarina A., Hakan TEMELTAS i Serik A. KULMAMIROV. "Flight control and collision avoidance of three UAVs following each other". INCAS BULLETIN 14, nr 4 (2.12.2022): 79–94. http://dx.doi.org/10.13111/2066-8201.2022.14.4.7.
Pełny tekst źródłaBdour, Jawad, i Belal H. Sababha. "A hybrid thrusting system for increasing the endurance time of multirotor unmanned aerial vehicles". International Journal of Advanced Robotic Systems 20, nr 3 (1.05.2023): 172988062311723. http://dx.doi.org/10.1177/17298806231172335.
Pełny tekst źródłaOktay, Tugrul, Harun Celik i Ilke Turkmen. "Maximizing autonomous performance of fixed-wing unmanned aerial vehicle to reduce motion blur in taken images". Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 232, nr 7 (28.03.2018): 857–68. http://dx.doi.org/10.1177/0959651818765027.
Pełny tekst źródłaSzabolcsi, Róbert. "Pole Placement Technique Applied in Unmanned Aerial Vehicles Automatic Flight Control Systems Design". Land Forces Academy Review 23, nr 1 (1.03.2018): 88–98. http://dx.doi.org/10.2478/raft-2018-0011.
Pełny tekst źródłaPereguda, O. M., A. V. Rodionov i S. P. Samoilyk. "APPROACH TO INCREASING THE SURVIVABILITY OF CLASS I UNMANNED AERIAL VEHICLE IN EMERGENCY OPERATIONS". Проблеми створення, випробування, застосування та експлуатації складних інформаційних систем, nr 18 (30.12.2020): 54–63. http://dx.doi.org/10.46972/2076-1546.2020.18.06.
Pełny tekst źródłaChang, Bao Rong, Hsiu-Fen Tsai, Jyong-Lin Lyu i Chien-Feng Huang. "Distributed sensing units deploying on group unmanned vehicles". International Journal of Distributed Sensor Networks 17, nr 7 (lipiec 2021): 155014772110368. http://dx.doi.org/10.1177/15501477211036877.
Pełny tekst źródłaRomaniuk, L., i I. Chykhira. "MECHANISM OF ENSURING SAFE UAV MOVEMENT UNDER THE CONDITIONS OF RADIO ATTACKS". Municipal economy of cities 4, nr 157 (25.09.2020): 178–83. http://dx.doi.org/10.33042/2522-1809-2020-4-157-178-183.
Pełny tekst źródłaTang, Sarah, i Vijay Kumar. "Autonomous Flight". Annual Review of Control, Robotics, and Autonomous Systems 1, nr 1 (28.05.2018): 29–52. http://dx.doi.org/10.1146/annurev-control-060117-105149.
Pełny tekst źródłaChen, Chao, Jiyang Zhang, Daibing Zhang i Lincheng Shen. "Control and flight test of a tilt-rotor unmanned aerial vehicle". International Journal of Advanced Robotic Systems 14, nr 1 (1.01.2017): 172988141667814. http://dx.doi.org/10.1177/1729881416678141.
Pełny tekst źródłaWang, Bo Hang, Dao Bo Wang, Zain Anwar Ali, Bai Ting Ting i Hao Wang. "An overview of various kinds of wind effects on unmanned aerial vehicle". Measurement and Control 52, nr 7-8 (13.05.2019): 731–39. http://dx.doi.org/10.1177/0020294019847688.
Pełny tekst źródłaRozprawy doktorskie na temat "Unmanned Aerial Vehicles Flight Control"
Peddle, Iain Kenneth. "Acceleration based manoeuvre flight control system for Unmanned Aerial Vehicles /". Link to the online version, 2008. http://hdl.handle.net/10019/1425.
Pełny tekst źródłaPeddle, Iain K. "Acceleration based manoeuvre flight control system for unmanned aerial vehicles". Thesis, Stellenbosch : Stellenbosch University, 2008. http://hdl.handle.net/10019.1/1172.
Pełny tekst źródłaA strategy for the design of an effective, practically feasible, robust, computationally efficient autopilot for three dimensional manoeuvre flight control of Unmanned Aerial Vehicles is presented. The core feature of the strategy is the design of attitude independent inner loop acceleration controllers. With these controllers implemented, the aircraft is reduced to a point mass with a steerable acceleration vector when viewed from an outer loop guidance perspective. Trajectory generation is also simplified with reference trajectories only required to be kinematically feasible. Robustness is achieved through uncertainty encapsulation and disturbance rejection at an acceleration level. The detailed design and associated analysis of the inner loop acceleration controllers is carried out for the case where the airflow incidence angles are small. For this case it is shown that under mild practically feasible conditions the inner loop dynamics decouple and become linear, thereby allowing the derivation of closed form pole placement solutions. Dimensional and normalised non-dimensional time variants of the inner loop controllers are designed and their respective advantages highlighted. Pole placement constraints that arise due to the typically weak non-minimum phase nature of aircraft dynamics are developed. A generic, aircraft independent guidance control algorithm, well suited for use with the inner loop acceleration controllers, is also presented. The guidance algorithm regulates the aircraft about a kinematically feasible reference trajectory. A number of fundamental basis trajectories are presented which are easily linkable to form complex three dimensional manoeuvres. Results from simulations with a number of different aircraft and reference trajectories illustrate the versatility and functionality of the autopilot. Key words: Aircraft control, Autonomous vehicles, UAV flight control, Acceleration control, Aircraft guidance, Trajectory tracking, Manoeuvre flight control.
Drozeski, Graham R. "A Fault-Tolerant Control Architecture for Unmanned Aerial Vehicles". Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/7523.
Pełny tekst źródłaPietersen, Willem Hermanus. "System identification for fault tolerant control of unmanned aerial vehicles". Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/4164.
Pełny tekst źródłaENGLISH ABSTRACT: In this project, system identification is done on the Modular Unmanned Aerial Vehicle (UAV). This is necessary to perform fault detection and isolation, which is part of the Fault Tolerant Control research project at Stellenbosch University. The equations necessary to do system identification are developed. Various methods for system identification is discussed and the regression methods are implemented. It is shown how to accommodate a sudden change in aircraft parameters due to a fault. Smoothed numerical differentiation is performed in order to acquire data necessary to implement the regression methods. Practical issues regarding system identification are discussed and methods for addressing these issues are introduced. These issues include data collinearity and identification in a closed loop. The regression methods are implemented on a simple roll model of the Modular UAV in order to highlight the various difficulties with system identification. Different methods for accommodating a fault are illustrated. System identification is also done on a full nonlinear model of the Modular UAV. All the parameters converges quickly to accurate values, with the exception of Cl R , CnP and Cn A . The reason for this is discussed. The importance of these parameters in order to do Fault Tolerant Control is also discussed. An S-function that implements the recursive least squares algorithm for parameter estimation is developed. This block accommodates for the methods of applying the forgetting factor and covariance resetting. This block can be used as a stepping stone for future work in system identification and fault detection and isolation.
AFRIKAANSE OPSOMMING: In hierdie projek word stelsel identifikasie gedoen op die Modulêre Onbemande Vliegtuig. Dit is nodig om foutopsporing en isolasie te doen wat ’n deel uitmaak van fout verdraagsame beheer. Die vergelykings wat nodig is om stelsel identifikasie te doen is ontwikkel. Verskeie metodes om stelsel identifikasie te doen word bespreek en die regressie metodes is uitgevoer. Daar word gewys hoe om voorsiening te maak vir ’n skielike verandering in die vliegtuig parameters as gevolg van ’n fout. Reëlmatige numeriese differensiasie is gedoen om data te verkry wat nodig is vir die uitvoering van die regressie metodes. Praktiese kwessies aangaande stelsel identifikasie word bespreek en metodes om hierdie kwessies aan te spreek word gegee. Hierdie kwessies sluit interafhanklikheid van data en identifikasie in ’n geslote lus in. Die regressie metodes word toegepas op ’n eenvoudige rol model van die Modulêre Onbemande Vliegtuig om die verskeie kwessies aangaande stelsel identifikasie uit te wys. Verskeie metodes vir die hantering vir ’n fout word ook illustreer. Stelsel identifikasie word ook op die volle nie-lineêre model van die Modulêre Onbemande Vliegtuig gedoen. Al die parameters konvergeer vinnig na akkurate waardes, met die uitsondering van Cl R , CnP and Cn A . Die belangrikheid van hierdie parameters vir fout verdraagsame beheer word ook bespreek. ’n S-funksie blok vir die rekursiewe kleinste-kwadraat algoritme is ontwikkel. Hierdie blok voorsien vir die metodes om die vergeetfaktor en kovariansie herstelling te implementeer. Hierdie blok kan gebruik word vir toekomstige werk in stelsel identifikasie en foutopsporing en isolasie.
Karlsson, Mia. "Control of Unmanned Aerial Vehicles using Non-linear Dynamic Inversion". Thesis, Linköping University, Department of Electrical Engineering, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-1519.
Pełny tekst źródłaThis master's thesis deals with the control design method called Non-linear Dynamic Inversion (NDI) and how it can be applied to Unmanned Aerial Vehicles (UAVs). In this thesis, simulations are conducted using a model for the unmanned aerial vehicle SHARC (Swedish Highly Advanced Research Configuration), which Saab AB is developing.
The idea with NDI is to cancel the non-linear dynamics and then the system can be controlled as a linear system. This design method needs much information about the system, or the output will not be as desired. Since it is impossible to know the exact mathematical model of a system, some kind of robust control theory is needed. In this thesis integral action is used.
A problem with NDI is that the mathematical model of a system is often very complex, which means that the controller also will be complex. Therefore, a controller that uses pure NDI is only discussed, and the simulations are instead based on approximations that use a cascaded NDI. Two such methods are investigated. One that uses much information from aerodata tables, and one that uses the derivatives of some measured outputs. Both methods generate satisfying results. The outputs from the second method are more oscillatory but the method is found to be more robust. If the signals are noisy, indications are that method one will be better.
De, Hart Ruan Dirk. "Advanced take-off and flight control algorithms for fixed wing unmanned aerial vehicles". Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/4179.
Pełny tekst źródłaENGLISH ABSTRACT: This thesis presents the development and implementation of a position based kinematic guidance system, the derivation and testing of a Dynamic Pursuit Navigation algorithm and a thorough analysis of an aircraft’s runway interactions, which is used to implement automated take-off of a fixed wing UAV. The analysis of the runway is focussed on the aircraft’s lateral modes. Undercarriage and aerodynamic effects are first analysed individually, after which the combined system is analysed. The various types of feedback control are investigated and the best solution suggested. Supporting controllers are designed and combined to successfully implement autonomous take-off, with acceleration based guidance. A computationally efficient position based kinematic guidance architecture is designed and implemented that allows a large percentage of the flight envelope to be utilised. An airspeed controller that allows for aggressive flight is designed and implemented by applying Feedback Linearisation techniques. A Dynamic Pursuit Navigation algorithm is derived that allows following of a moving ground based object at a constant distance (radius). This algorithm is implemented and verified through non-linear simulation.
AFRIKAANSE OPSOMMING: Hierdie tesis handel oor die ontwikkeling en toepassing van posisie-afhanklike, kinematiese leidings-algoritmes, die ontwikkeling van ’n Dinamiese Volgings-navigasie-algoritme en ’n deeglike analise van die interaksie van ’n lugraam met ’n aanloopbaan sodat outonome opstygprosedure van ’n vastevlerk vliegtuig bewerkstellig kan word. Die bogenoemde analise het gefokus op die laterale modus van ’n vastevlerk vliegtuig en is tweeledig behartig. Die eerste gedeelte het gefokus op die analise van die onderstel, terwyl die lugraam en die aerodinamiese effekte in die tweede gedeelte ondersoek is. Verskillende tipes terugvoerbeheer vir die outonome opstygprosedure is ondersoek om die mees geskikte tegniek te bepaal. Addisionele beheerders, wat deur die versnellingsbeheer gebaseerde opstygprosedure benodig word, is ontwerp. ’n Posisie gebaseerde kinematiese leidingsbeheerstruktuur om ’n groot persentasie van die vlugvermoë te benut, is ontwikkel. Terugvoer linearisering is toegepas om ’n lugspoedbeheerder , wat in staat is tot aggressiewe vlug, te ontwerp. ’n Dinamiese Volgingsnavigasie-algoritme wat in staat is om ’n bewegende grondvoorwerp te volg, is ontwikkel. Hierdie algoritme is geïmplementeer en bevestig deur nie-lineêre simulasie.
Kang, Keeryun. "Online optimal obstacle avoidance for rotary-wing autonomous unmanned aerial vehicles". Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44820.
Pełny tekst źródłaGrymin, David J. "Development of a novel method for autonomous navigation and landing of unmanned aerial vehicles /". Online version of thesis, 2009. http://hdl.handle.net/1850/10615.
Pełny tekst źródłaKriel, Steven Cornelius. "A comparison of control systems for the flight transition of VTOL unmanned aerial vehicles". Thesis, Link to the online version, 2008. http://hdl.handle.net/10019/1334.
Pełny tekst źródłaWard, Garrett. "Design of a Small Form-Factor Flight Control System". VCU Scholars Compass, 2014. http://scholarscompass.vcu.edu/etd/3448.
Pełny tekst źródłaKsiążki na temat "Unmanned Aerial Vehicles Flight Control"
Guidance of unmanned aerial vehicles. Boca Raton: Taylor & Francis, 2011.
Znajdź pełny tekst źródłaWhite, Brian, 1947 June 6- i Shanmugavel Madhavan, red. Cooperative path planning of unmanned aerial vehicles. Chichester, West Sussex, U.K: Wiley, 2011.
Znajdź pełny tekst źródłaDucard, Guillaume J. J. Fault-tolerant flight control and guidance systems: Practical methods for small unmanned aerial vehicles. London: Springer, 2009.
Znajdź pełny tekst źródłaDucard, Guillaume J. J. Fault-tolerant flight control and guidance systems: Practical methods for small unmanned aerial vehicles. London: Springer, 2009.
Znajdź pełny tekst źródłaWhite, Brian, 1947 June 6-, Shanmugavel Madhavan i Zhu Xiaoping 1963 September-, red. Wu ren ji xie tong lu jing gui hua: Cooperative path planning of unmanned aerial vehicles. Beijing: Guo fang gong ye chu ban she, 2013.
Znajdź pełny tekst źródła1954-, Lozano R., red. Unmanned aerial vehicles: Embedded control. London: ISTE, 2010.
Znajdź pełny tekst źródłaLozano, R. Unmanned aerial vehicles: Embedded control. London: ISTE, 2010.
Znajdź pełny tekst źródłaVepa, Ranjan. Nonlinear Control of Robots and Unmanned Aerial Vehicles. Boca Raton : Taylor & Francis, a CRC title, part of the Taylor &: CRC Press, 2016. http://dx.doi.org/10.1201/9781315367378.
Pełny tekst źródłaK, Valavanis, Oh Paul Y i Piegl Les A, red. Unmanned aircraft systems: International Symposium on Unmanned Aerial Vehicles, UAV'08. Dordrecht: Springer, 2008.
Znajdź pełny tekst źródłaUnmanned aerial vehicles (UAVs): Past, present, and future. New Delhi: Lancer's Books, 2013.
Znajdź pełny tekst źródłaCzęści książek na temat "Unmanned Aerial Vehicles Flight Control"
Ng, Tian Seng. "Unmanned Aerial Vehicle System". W Flight Systems and Control, 109–18. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8721-9_6.
Pełny tekst źródłaHow, Jonathan P., Emilio Frazzoli i Girish Vinayak Chowdhary. "Linear Flight Control Techniques for Unmanned Aerial Vehicles". W Handbook of Unmanned Aerial Vehicles, 529–76. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-90-481-9707-1_49.
Pełny tekst źródłaGirish, Chowdhary Vinayak, Frazzoli Emilio, How P. Jonathan i Liu Hugh. "Nonlinear Flight Control Techniques for Unmanned Aerial Vehicles". W Handbook of Unmanned Aerial Vehicles, 577–612. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-90-481-9707-1_87.
Pełny tekst źródłaKannan, Suresh K., Girish Vinayak Chowdhary i Eric N. Johnson. "Adaptive Control of Unmanned Aerial Vehicles: Theory and Flight Tests". W Handbook of Unmanned Aerial Vehicles, 613–73. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-90-481-9707-1_61.
Pełny tekst źródłaGosiewski, Zdzisław, i Leszek Ambroziak. "Formation Flight Control Scheme for Unmanned Aerial Vehicles". W Robot Motion and Control 2011, 331–40. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-2343-9_28.
Pełny tekst źródłaVepa, Ranjan. "Dynamics and Control of Drones and Unmanned Aerial Vehicles". W Flight Dynamics, Simulation, and Control, 551–609. Wyd. 2. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003266310-11.
Pełny tekst źródłaPandey, Alok Kumar, Anshuman Shukla, Ashutosh Gupta i Manjeet Singh Gangwar. "Linear Flight Control of Unmanned Aerial Vehicle". W Advances in Intelligent Systems and Computing, 393–400. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-5903-2_40.
Pełny tekst źródłaPourtakdoust, Seid H., i Jalal Karimi. "Constrained Motion Planning and Trajectory Optimization for Unmanned Aerial Vehicles". W Advanced UAV Aerodynamics, Flight Stability and Control, 577–611. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781118928691.ch17.
Pełny tekst źródłaLiu, Hao, Deyuan Liu, Yan Wan, Frank L. Lewis i Kimon P. Valavanis. "Robust Time-Varying Formation Control for Tail-Sitters in Flight Mode Transitions". W Robust Formation Control for Multiple Unmanned Aerial Vehicles, 77–97. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003242147-5.
Pełny tekst źródłaLiu, Hao, Deyuan Liu, Yan Wan, Frank L. Lewis i Kimon P. Valavanis. "Robust Fault-Tolerant Formation Control for Tail-Sitters in Aggressive Flight Mode Transitions". W Robust Formation Control for Multiple Unmanned Aerial Vehicles, 99–120. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003242147-6.
Pełny tekst źródłaStreszczenia konferencji na temat "Unmanned Aerial Vehicles Flight Control"
Prats, Xavier, Enric Pastor, Pablo Royo i Juan Lopez. "Flight Dispatching for Unmanned Aerial Vehicles". W AIAA Guidance, Navigation and Control Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-6636.
Pełny tekst źródłaYang, Aolei, Wasif Naeem, George W. Irwin i Kang Li. "A decentralised control strategy for formation flight of unmanned aerial vehicles". W 2012 UKACC International Conference on Control (CONTROL). IEEE, 2012. http://dx.doi.org/10.1109/control.2012.6334654.
Pełny tekst źródłaChen, Gao, Zhen Ziyang, Gong Huajun i Sun Yili. "Constraints for unmanned aerial vehicles formation flight path". W 2014 IEEE Chinese Guidance, Navigation and Control Conference (CGNCC). IEEE, 2014. http://dx.doi.org/10.1109/cgncc.2014.7007359.
Pełny tekst źródłaMingfeng Zhang i Hugh H. T. Liu. "Formation flight of multiple fixed-wing unmanned aerial vehicles". W 2013 American Control Conference (ACC). IEEE, 2013. http://dx.doi.org/10.1109/acc.2013.6580066.
Pełny tekst źródłaGao, Li, Wenhai Wu i Siyu Zhou. "Adaptive Flight Control Design for the Unmanned Aerial Vehicles". W 2011 International Conference on Intelligent Computation Technology and Automation (ICICTA). IEEE, 2011. http://dx.doi.org/10.1109/icicta.2011.97.
Pełny tekst źródłaZhang, Haijie, i Jianguo Zhao. "Vision Based Surface Slope Estimation for Unmanned Aerial Vehicle Perching". W ASME 2018 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/dscc2018-9210.
Pełny tekst źródłaDong, Xiangxu, Guowei Cai, Feng Lin, Ben M. Chen, Hai Lin i Tong H. Lee. "Implementation of formation flight of multiple unmanned aerial vehicles". W 2010 8th IEEE International Conference on Control and Automation (ICCA). IEEE, 2010. http://dx.doi.org/10.1109/icca.2010.5524123.
Pełny tekst źródłaHarada, Masanori, i Kevin Bollino. "Fuel Optimization of Figure-8 Flight for Unmanned Aerial Vehicles". W AIAA Guidance, Navigation, and Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2009. http://dx.doi.org/10.2514/6.2009-6011.
Pełny tekst źródłaSubbarao, Kamesh, Carlos Tule i Pengkai Ru. "Nonlinear Model Predictive Control Applied to Trajectory Tracking for Unmanned Aerial Vehicles". W AIAA Atmospheric Flight Mechanics Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2015. http://dx.doi.org/10.2514/6.2015-2857.
Pełny tekst źródłaWzorek, Mariusz, Piotr Rudol, Gianpaolo Conte i Patrick Doherty. "LinkBoard: Advanced flight control system for micro unmanned aerial vehicles". W 2017 2nd International Conference on Control and Robotics Engineering (ICCRE). IEEE, 2017. http://dx.doi.org/10.1109/iccre.2017.7935051.
Pełny tekst źródłaRaporty organizacyjne na temat "Unmanned Aerial Vehicles Flight Control"
Dahleh, M. A., i J. Tsitsiklis. Hierarchical Nonlinear Control for Unmanned Aerial Vehicles. Fort Belvoir, VA: Defense Technical Information Center, lipiec 2002. http://dx.doi.org/10.21236/ada417306.
Pełny tekst źródłaBernstein, Dennis S. Intelligenct Flight Control of Uninhabited Aerial Vehicles. Fort Belvoir, VA: Defense Technical Information Center, maj 2000. http://dx.doi.org/10.21236/ada382981.
Pełny tekst źródłaSmirnov, Mikhail N., i Maria A. Smirnova. Questions of Stabilization and Control of Unmanned Aerial Vehicles. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, styczeń 2018. http://dx.doi.org/10.7546/crabs.2018.01.12.
Pełny tekst źródłaSmirnov, Mikhail N., i Maria A. Smirnova. Questions of Stabilization and Control of Unmanned Aerial Vehicles. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, styczeń 2018. http://dx.doi.org/10.7546/grabs2018.1.12.
Pełny tekst źródłaSong, Yong D. Fault-Tolerant and Reconfigurable Control of Unmanned Aerial Vehicles (UAVs). Fort Belvoir, VA: Defense Technical Information Center, luty 2008. http://dx.doi.org/10.21236/ada477568.
Pełny tekst źródłaBayraktar, Selcuk, Georgios E. Fainekos i George J. Pappas. Hybrid Modeling and Experimental Cooperative Control of Multiple Unmanned Aerial Vehicles. Fort Belvoir, VA: Defense Technical Information Center, grudzień 2004. http://dx.doi.org/10.21236/ada436407.
Pełny tekst źródłaNelson, Jeremy, Gloria Calhoun i Mark Draper. A Dynamic Mission Replanning Testbed for Supervisory Control of Multiple Unmanned Aerial Vehicles. Fort Belvoir, VA: Defense Technical Information Center, marzec 2006. http://dx.doi.org/10.21236/ada444586.
Pełny tekst źródłaChung, Soon-Jo. Bio-Inspired Integrated Sensing and Control Flapping Flight for Micro Aerial Vehicles. Fort Belvoir, VA: Defense Technical Information Center, luty 2012. http://dx.doi.org/10.21236/ada564148.
Pełny tekst źródłaWalters, Brett A., Shawn Huber, Jon French i Michael J. Barnes. Using Simulation Models to Analyze the Effects of Crew Size and Crew Fatigue on the Control of Tactical Unmanned Aerial Vehicles (TUAVs). Fort Belvoir, VA: Defense Technical Information Center, lipiec 2002. http://dx.doi.org/10.21236/ada405012.
Pełny tekst źródła