Gotowa bibliografia na temat „Universal Functions”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Universal Functions”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Universal Functions"
Larson, Paul B., Arnold W. Miller, Juris Steprāns i William A. R. Weiss. "Universal functions". Fundamenta Mathematicae 227, nr 3 (2014): 197–245. http://dx.doi.org/10.4064/fm227-3-1.
Pełny tekst źródłaBonilla, A. "Universal harmonic functions". Quaestiones Mathematicae 25, nr 4 (grudzień 2002): 527–30. http://dx.doi.org/10.2989/16073600209486036.
Pełny tekst źródłaAron, Richard, i Dinesh Markose. "ON UNIVERSAL FUNCTIONS". Journal of the Korean Mathematical Society 41, nr 1 (1.01.2004): 65–76. http://dx.doi.org/10.4134/jkms.2004.41.1.065.
Pełny tekst źródłaChan, Kit C. "Universal meromorphic functions". Complex Variables, Theory and Application: An International Journal 46, nr 4 (listopad 2001): 307–14. http://dx.doi.org/10.1080/17476930108815418.
Pełny tekst źródłaBogmér, A., i A. Sövergjártó. "On universal functions". Acta Mathematica Hungarica 49, nr 1-2 (marzec 1987): 237–39. http://dx.doi.org/10.1007/bf01956327.
Pełny tekst źródłaAl-Roomi, Ali R., i Mohamed E. El-Hawary. "Universal Functions Originator". Applied Soft Computing 94 (wrzesień 2020): 106417. http://dx.doi.org/10.1016/j.asoc.2020.106417.
Pełny tekst źródłaGorkin, Pamela, i Raymond Mortini. "Universal Singular Inner Functions". Canadian Mathematical Bulletin 47, nr 1 (1.03.2004): 17–21. http://dx.doi.org/10.4153/cmb-2004-003-0.
Pełny tekst źródłaKhisamiev, A. N. "Universal Functions Over Trees". Algebra and Logic 54, nr 2 (maj 2015): 188–93. http://dx.doi.org/10.1007/s10469-015-9338-5.
Pełny tekst źródłaPolyakov, E. A. "On R-Universal Functions". Mathematical Notes 78, nr 1-2 (lipiec 2005): 234–38. http://dx.doi.org/10.1007/s11006-005-0120-1.
Pełny tekst źródłaCostakis, GG, V. Nestoridis i V. Vlachou. "Smooth univalent universal functions". Mathematical Proceedings of the Royal Irish Academy 107, nr 1 (1.01.2007): 101–14. http://dx.doi.org/10.3318/pria.2007.107.1.101.
Pełny tekst źródłaRozprawy doktorskie na temat "Universal Functions"
Ura, Hiroyuki. "Checking theory and grammatical functions in universal grammar /". New York [u.a.] : Oxford Univ. Press, 2000. http://www.loc.gov/catdir/enhancements/fy0605/99023232-d.html.
Pełny tekst źródłaBeise, Hans-Peter [Verfasser], i Jürgen [Akademischer Betreuer] Müller. "Universal and Frequently Universal Functions of Exponential Type / Hans-Peter Beise ; Betreuer: Jürgen Müller". Trier : Universität Trier, 2011. http://d-nb.info/1197697012/34.
Pełny tekst źródłaPohl, Daniel [Verfasser], Oliver [Gutachter] Roth i Jürgen [Gutachter] Müller. "Universal Locally Univalent Functions and Universal Conformal Metrics / Daniel Pohl ; Gutachter: Oliver Roth, Jürgen Müller". Würzburg : Universität Würzburg, 2019. http://d-nb.info/1180286685/34.
Pełny tekst źródłaGroft, Chad. "Isoperimetric functions on the universal covers of compact spaces /". May be available electronically:, 2007. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.
Pełny tekst źródłaAbidin, Aysajan. "Weaknesses of Authentication inQuantum Cryptography and Strongly Universal Hash Functions". Licentiate thesis, Linköping University, Linköping University, Department of Mathematics, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-57290.
Pełny tekst źródłaAuthentication is an indispensable part of Quantum Cryptography, which is an unconditionally secure key distribution technique based on the laws of nature. Without proper authentication, Quantum Cryptography is vulnerable to “man-in-the-middle” attacks. Therefore, to guarantee unconditional security of any Quantum Cryptographic protocols, the authentication used must also be unconditionally secure. The standard in Quantum Cryptography is to use theWegman-Carter authentication, which is unconditionally secure and is based on the idea of universal hashing.
In this thesis, we first investigate properties of a Strongly Universal hash function family to facilitate understanding the properties of (classical) authentication used in Quantum Cryptography. Then, we study vulnerabilities of a recently proposed authentication protocol intended to rule out a "man-in-the-middle" attack on Quantum Cryptography. Here, we point out that the proposed authentication primitive is not secure when used in a generic Quantum Cryptographic protocol. Lastly, we estimate the lifetime of authentication using encrypted tags when the encryption key is partially known. Under simplifying assumptions, we derive that the lifetime is linearly dependent on the length of the authentication key. Experimental results that support the theoretical results are also presented.
Abidin, Aysajan. "Authentication in Quantum Key Distribution : Security Proof and Universal Hash Functions". Doctoral thesis, Linköpings universitet, Informationskodning, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-91265.
Pełny tekst źródłaICG QC
Abidin, Aysajan. "Weaknesses of Authentication in Quantum Cryptography and Strongly Universal Hash Functions". Licentiate thesis, Linköpings universitet, Tillämpad matematik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-57290.
Pełny tekst źródłaICG QC
Gomes, Victor pereira. "Funções recursivas primitivas: caracterização e alguns resultados para esta classe de funções". Universidade Federal da Paraíba, 2016. http://tede.biblioteca.ufpb.br:8080/handle/tede/8514.
Pełny tekst źródłaMade available in DSpace on 2016-08-10T14:17:41Z (GMT). No. of bitstreams: 1 arquivo total.pdf: 975005 bytes, checksum: 6f8194b9c0cb9c0bbd07b1d2b0ba4b9e (MD5) Previous issue date: 2016-06-21
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
The class of primitive recursive functions is not a formal version to the class of algorithmic functions, we study this special class of numerical functions due to the fact of that many of the functions known as algorithmic are primitive recursive. The approach on the class of primitive recursive functions aims to explore this special class of functions and from that, present solutions for the following problems: (1) given the class of primitive recursive derivations, is there an algorithm, that is, a mechanical procedure for recognizing primitive recursive derivations? (2) Is there a universal function for the class of primitive recursive functions? If so, is this function primitive recursive? (3) Are all the algorithmic functions primitive recursive? To provide solutions to these issues, we base on the hypothetical-deductive method and argue based on the works of Davis (1982), Mendelson (2009), Dias e Weber (2010), Rogers (1987), Soare (1987), Cooper (2004), among others. We present the theory of Turing machines which is a formal version to the intuitive notion of algorithm, and after that the famous Church-Turing tesis which identifies the class of algorithmic functions with the class of Turing-computable functions. We display the class of primitive recursive functions and show that it is a subclass of Turing-computable functions. Having explored the class of primitive recursive functions we proved as results that there is a recognizer algorithm to the class of primitive recursive derivations; that there is a universal function to the class of primitive recursive functions which does not belong to this class; and that not every algorithmic function is primitive recursive.
A classe das funções recursivas primitivas não constitui uma versão formal para a classe das funções algorítmicas, estudamos esta classe especial de funções numéricas devido ao fato de que muitas das funções conhecidas como algorítmicas são recursivas primitivas. A abordagem acerca da classe das funções recursivas primitivas tem como objetivo explorar esta classe especial de funções e, a partir disto, apresentar soluções para os seguintes problemas: (1) dada a classe das derivações recursivas primitivas, há um algoritmo, ou seja, um procedimento mecânico, para reconhecer derivações recursivas primitivas? (2) Existe uma função universal para a classe das funções recursivas primitivas? Se sim, essa função é recursiva primitiva? (3) Toda função algorítmica é recursiva primitiva? Para apresentar soluções para estas questões, nos pautamos no método hipotético-dedutivo e argumentamos com base nos manuais de Davis (1982), Mendelson (2009), Dias e Weber (2010), Rogers (1987), Soare (1987), Cooper (2004), entre outros. Apresentamos a teoria das máquinas de Turing, que constitui uma versão formal para a noção intuitiva de algoritmo, e, em seguida, a famosa tese de Church-Turing, a qual identifica a classe das funções algorítmicas com a classe das funções Turing-computáveis. Exibimos a classe das funções recursivas primitivas, e mostramos que a mesma constitui uma subclasse das funções Turing-computáveis. Tendo explorado a classe das funções recursivas primitivas, como resultados, provamos que existe um algoritmo reconhecedor para a classe das derivações recursivas primitivas; que existe uma função universal para a classe das funções recursivas primitivas a qual não pertence a esta classe; e que nem toda função algorítmica é recursiva primitiva.
Ahmed, Istiaque, i s3119889@student rmit edu au. "Canonical and Perturbed Quantum Potential-Well Problems: A Universal Function Approach". RMIT University. Electrical and Computer Engineering, 2007. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20080108.124715.
Pełny tekst źródłaPinheiro, Leonardo V. "Chaotic Extensions for General Operators on a Hilbert Subspace". Bowling Green State University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1399157158.
Pełny tekst źródłaKsiążki na temat "Universal Functions"
Checking theory and grammatical functions in universal grammar. New York: Oxford University Press, 2000.
Znajdź pełny tekst źródła1975-, Teo Lee-Peng, red. Weil-Petersson metric on the universal Teichmüller space. Providence, R.I: American Mathematical Society, 2006.
Znajdź pełny tekst źródłaKalnins, E. G. Models of q-algebra representations. Hamilton, N.Z: University of Waikato, 1992.
Znajdź pełny tekst źródłaKalnins, E. G. Models of q-algebra representations. Hamilton, N.Z: University of Waikato, 1992.
Znajdź pełny tekst źródłaFreese, Ralph. Commutator theory for congruence modular varieties. Cambridge: Cambridge University Press, 1987.
Znajdź pełny tekst źródłaFoundations and functions of theology as a universal science: Theological method and apologetic praxis in Wolfhart Pannenberg and Karl Rahner. Frankfurt am Main: P. Lang, 1996.
Znajdź pełny tekst źródłaXu, Ding. Functional categories in Mandarin Chinese. The Hague: Holland Academic Graphics, 1997.
Znajdź pełny tekst źródłaFunction, selection, and innateness: The emergence of language universals. Oxford: Oxford University Press, 1999.
Znajdź pełny tekst źródłaVasanthi, T. Optimum Reliability Analysis of Mobile Adhoc Networks using Universal Generating Function under Limited Delivery Time and Cost. Redaktorzy Kokula Krishna Hari K i K. Saravanan. Tiruppur, Tamil Nadu, India: Association of Scientists, Developers and Faculties, 2016.
Znajdź pełny tekst źródłaHerms, Ronald. An apocalypse for the church and for the world: The narrative function of universal language in the book of Revelation. Berlin: Walter de Gruyter, 2006.
Znajdź pełny tekst źródłaCzęści książek na temat "Universal Functions"
Rudeanu, Sergiu. "Universal algebra". W Lattice Functions and Equations, 13–30. London: Springer London, 2001. http://dx.doi.org/10.1007/978-1-4471-0241-0_2.
Pełny tekst źródłaShen, A., i N. Vereshchagin. "Universal functions and undecidability". W The Student Mathematical Library, 11–18. Providence, Rhode Island: American Mathematical Society, 2002. http://dx.doi.org/10.1090/stml/019/02.
Pełny tekst źródłaAbidin, Aysajan, i Jan-Åke Larsson. "New Universal Hash Functions". W Research in Cryptology, 99–108. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34159-5_7.
Pełny tekst źródłaKorogodski, Leonid, i Yan Soibelman. "Quantized universal enveloping algebras". W Algebras of Functions on Quantum Groups: Part I, 57–94. Providence, Rhode Island: American Mathematical Society, 1998. http://dx.doi.org/10.1090/surv/056/03.
Pełny tekst źródłaNevelsteen, Wim, i Bart Preneel. "Software Performance of Universal Hash Functions". W Advances in Cryptology — EUROCRYPT ’99, 24–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/3-540-48910-x_3.
Pełny tekst źródłaMesiar, Radko, i Andrea Stupňanová. "Capacities, Survival Functions and Universal Integrals". W Advances in Intelligent Systems and Computing, 1–8. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59306-7_1.
Pełny tekst źródłaDuval, Sébastien, i Gaëtan Leurent. "Lightweight MACs from Universal Hash Functions". W Smart Card Research and Advanced Applications, 195–215. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-42068-0_12.
Pełny tekst źródłaPreneel, Bart. "Universal One-Way Hash Functions (UOWHF)". W Encyclopedia of Cryptography and Security, 1349–50. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-1-4419-5906-5_624.
Pełny tekst źródłaGoldman, Leon. "Individual and Universal Eschatology in Zoroastrianism". W Eschatology in Antiquity: Forms and Functions, 34–48. London: Routledge, 2021. http://dx.doi.org/10.4324/9781315459486-2.
Pełny tekst źródłaSchlage-Puchta, Jan-Christoph. "The Non-existence of Universal Carmichael Numbers". W From Arithmetic to Zeta-Functions, 435–53. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28203-9_26.
Pełny tekst źródłaStreszczenia konferencji na temat "Universal Functions"
Mussardo, Giuseppe, i G. Delfino. "Universal ratios and correlation functions". W Workshop on Integrable Theories, Solitons and Duality. Trieste, Italy: Sissa Medialab, 2002. http://dx.doi.org/10.22323/1.008.0007.
Pełny tekst źródłaRobinson, Michael. "Universal factorizations of quasiperiodic functions". W 2015 International Conference on Sampling Theory and Applications (SampTA). IEEE, 2015. http://dx.doi.org/10.1109/sampta.2015.7148959.
Pełny tekst źródłaAl-Roomi, Ali R., i Mohamed E. El-Hawary. "Universal Functions Originator—Part I: Design". W 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE). IEEE, 2019. http://dx.doi.org/10.1109/ccece.2019.8861880.
Pełny tekst źródłaAl-Roomi, Ali R., i Mohamed E. El-Hawary. "Universal Functions Originator—Part II: Evaluation". W 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE). IEEE, 2019. http://dx.doi.org/10.1109/ccece.2019.8861890.
Pełny tekst źródłaThakur, Shashidhar, i D. F. Wong. "Universal logic modules for series-parallel functions". W the 1996 ACM fourth international symposium. New York, New York, USA: ACM Press, 1996. http://dx.doi.org/10.1145/228370.228375.
Pełny tekst źródłaHovanov, N. V., V. V. Kornikov i I. A. Seregin. "Universal representation of fuzzy sets' membership functions". W Proceedings of 8th International Fuzzy Systems Conference. IEEE, 1999. http://dx.doi.org/10.1109/fuzzy.1999.793229.
Pełny tekst źródłaNeydorf, Rudolf, Dean Vucinic i Ivan Chernogorov. "Universal generator of irregular multidimensional multiextremal functions". W 2017 IEEE East-West Design & Test Symposium (EWDTS). IEEE, 2017. http://dx.doi.org/10.1109/ewdts.2017.8110046.
Pełny tekst źródłaSafdari, Mustafa. "Evolving universal hash functions using genetic algorithms". W the 11th annual conference companion. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1570256.1570396.
Pełny tekst źródłaColbert, Brendon K., i Matthew M. Peet. "Using SDP to Parameterize Universal Kernel Functions". W 2019 IEEE 58th Conference on Decision and Control (CDC). IEEE, 2019. http://dx.doi.org/10.1109/cdc40024.2019.9030084.
Pełny tekst źródłaRuslan, Vikhorev. "Universal logic cells to implement systems functions". W 2016 IEEE NW Russia Young Researchers in Electrical and Electronic Engineering Conference (EIConRusNW). IEEE, 2016. http://dx.doi.org/10.1109/eiconrusnw.2016.7448197.
Pełny tekst źródłaRaporty organizacyjne na temat "Universal Functions"
Carlson, Joseph, Richard Furnstahl, Mihai Horoi, Rusty Lusk, Witold Nazarewicz, Esmond Ng, Ian Thompson i James Vary. Universal Nuclear Energy Density Functional. Office of Scientific and Technical Information (OSTI), grudzień 2012. http://dx.doi.org/10.2172/1157042.
Pełny tekst źródłaZinenko, Olena. THE SPECIFICITY OF INTERACTION OF JOURNALISTS WITH THE PUBLIC IN COVERAGE OF PUBLIC EVENTS ON SOCIAL TOPICS. Ivan Franko National University of Lviv, luty 2021. http://dx.doi.org/10.30970/vjo.2021.49.11056.
Pełny tekst źródłaLin, Daw-Tung, i Judith E. Dayhoff. Network Unfolding Algorithm and Universal Spatiotemporal Function Approximation. Fort Belvoir, VA: Defense Technical Information Center, styczeń 1994. http://dx.doi.org/10.21236/ada453011.
Pełny tekst źródłade Leeuw, Gerrit. Toward a Universal Sea Spray Source Function (UNISOURCE). Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2003. http://dx.doi.org/10.21236/ada630210.
Pełny tekst źródłaCarlson, Joe A., Dick Furnstahl, Mihai Horoi, Rusty Lust, Witek Nazaewicc, Esmond Ng, Ian Thompson i James Vary. Building a Universal Nuclear Energy Density Functional. Office of Scientific and Technical Information (OSTI), grudzień 2012. http://dx.doi.org/10.2172/1163477.
Pełny tekst źródłaBertulani, Carlos A. Building a Universal Nuclear Energy Density Functional. Office of Scientific and Technical Information (OSTI), wrzesień 2014. http://dx.doi.org/10.2172/1155011.
Pełny tekst źródłaNazarewicz, Witold. Building a universal nuclear energy density functional (UNEDF). Office of Scientific and Technical Information (OSTI), lipiec 2012. http://dx.doi.org/10.2172/1116134.
Pełny tekst źródłaJoe Carlson, Dick Furnstahl, Mihai Horoi, Rusty Lusk, Witek Nazarewicz, Esmond Ng, Ian Thompson i James Vary. Building A Universal Nuclear Energy Density Functional (UNEDF). Office of Scientific and Technical Information (OSTI), wrzesień 2012. http://dx.doi.org/10.2172/1060545.
Pełny tekst źródłaVary, James P., Joe Carlson, Dick Furnstahl, Mihai Horoi, Rusty Lusk, Witek Nazarewicz, Esmond Ng i Ian Thompson. Building a Universal Nuclear Energy Density Functional (UNEDF). SciDAC-2 Project. Office of Scientific and Technical Information (OSTI), wrzesień 2012. http://dx.doi.org/10.2172/1168663.
Pełny tekst źródłaCarlson, Joe, Dick Furnstahl, Rusty Lusk, Witek Nazarewicz, Esmond Ng, Ian Thompson i James Vary. Building a Universal Nuclear Energy Density Functional (UNEDF): SciDAC-2 Project. Office of Scientific and Technical Information (OSTI), czerwiec 2012. http://dx.doi.org/10.2172/1150654.
Pełny tekst źródła