Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Units in rings and group rings.

Artykuły w czasopismach na temat „Units in rings and group rings”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Units in rings and group rings”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Jespers, Eric, i C. Polcino Milies. "Units of group rings". Journal of Pure and Applied Algebra 107, nr 2-3 (marzec 1996): 233–51. http://dx.doi.org/10.1016/0022-4049(95)00066-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Kumari, P., M. Sahai i R. K. Sharma. "Jordan regular units in rings and group rings". Ukrains’kyi Matematychnyi Zhurnal 75, nr 3 (11.04.2023): 351–63. http://dx.doi.org/10.37863/umzh.v75i3.1130.

Pełny tekst źródła
Streszczenie:
UDC 512.5 The concept of Lie regular elements and Lie regular units was defined and studied by Kanwar, Sharma and Yadav in <em>Lie regular generators of general linear groups</em>, Comm. Algebra, <strong>40</strong>, № 4, 1304–1315 (2012)]. We introduce Jordan regular elements and Jordan regular units. It is proved that the order of the set of Jordan regular units in M ( 2 , Z 2 n ) is equal to a half of the order of U ( M ( 2 , Z 2 n ) ) . Further, we show that the group ring K G of a group G over a field K of characteristic 2 has no Jordan regular units.
Style APA, Harvard, Vancouver, ISO itp.
3

Bartholdi, Laurent. "On Gardam's and Murray's units in group rings". Algebra and Discrete Mathematics 35, nr 1 (2023): 22–29. http://dx.doi.org/10.12958/adm2053.

Pełny tekst źródła
Streszczenie:
We show that the units found in torsion-free group rings by Gardam are twisted unitary elements. This justifies some choices in Gardam's construction that might have appeared arbitrary, and yields more examples of units. We note that all units found up to date exhibit non-trivial symmetry.
Style APA, Harvard, Vancouver, ISO itp.
4

Farkas, Daniel R., i Peter A. Linnell. "Trivial Units in Group Rings". Canadian Mathematical Bulletin 43, nr 1 (1.03.2000): 60–62. http://dx.doi.org/10.4153/cmb-2000-008-0.

Pełny tekst źródła
Streszczenie:
AbstractLet G be an arbitrary group and let U be a subgroup of the normalized units in ℤG. We show that if U contains G as a subgroup of finite index, then U = G. This result can be used to give an alternative proof of a recent result of Marciniak and Sehgal on units in the integral group ring of a crystallographic group.
Style APA, Harvard, Vancouver, ISO itp.
5

Bist, V. "Torsion units in group rings". Publicacions Matemàtiques 36 (1.01.1992): 47–50. http://dx.doi.org/10.5565/publmat_36192_04.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Chatzidakis, Zoé, i Peter Pappas. "Units in Abelian Group Rings". Journal of the London Mathematical Society s2-44, nr 1 (sierpień 1991): 9–23. http://dx.doi.org/10.1112/jlms/s2-44.1.9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Dekimpe, Karel. "Units in group rings of crystallographic groups". Fundamenta Mathematicae 179, nr 2 (2003): 169–78. http://dx.doi.org/10.4064/fm179-2-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Herman, Allen, Yuanlin Li i M. M. Parmenter. "Trivial Units for Group Rings with G-adapted Coefficient Rings". Canadian Mathematical Bulletin 48, nr 1 (1.03.2005): 80–89. http://dx.doi.org/10.4153/cmb-2005-007-1.

Pełny tekst źródła
Streszczenie:
AbstractFor each finite group G for which the integral group ring ℤG has only trivial units, we give ring-theoretic conditions for a commutative ring R under which the group ring RG has nontrivial units. Several examples of rings satisfying the conditions and rings not satisfying the conditions are given. In addition, we extend a well-known result for fields by showing that if R is a ring of finite characteristic and RG has only trivial units, then G has order at most 3.
Style APA, Harvard, Vancouver, ISO itp.
9

Herman, Allen, i Yuanlin Li. "Trivial units for group rings over rings of algebraic integers". Proceedings of the American Mathematical Society 134, nr 3 (18.07.2005): 631–35. http://dx.doi.org/10.1090/s0002-9939-05-08018-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Hoechsmann, K., i S. K. Sehgal. "Integral Group Rings Without Proper Units". Canadian Mathematical Bulletin 30, nr 1 (1.03.1987): 36–42. http://dx.doi.org/10.4153/cmb-1987-005-6.

Pełny tekst źródła
Streszczenie:
AbstractIf A is an elementary abelian ρ-group and C one of its cyclic subgroups, the integral group rings ZA contains, of course, the ring ZC. It will be shown below, for A of rank 2 and ρ a regular prime, that every unit of ZA is a product of units of ZC, as C ranges over all cyclic subgroups.
Style APA, Harvard, Vancouver, ISO itp.
11

Juriaans, Stanley Orlando. "Torsion Units in Integral Group Rings". Canadian Mathematical Bulletin 38, nr 3 (1.09.1995): 317–24. http://dx.doi.org/10.4153/cmb-1995-046-7.

Pełny tekst źródła
Streszczenie:
AbstractSpecial cases of Bovdi's conjecture are proved. In particular the conjecture is proved for supersolvable and Frobenius groups. We also prove that if is finite, α ∊ VℤG a torsion unit and m the smallest positive integer such that αm ∊ G then m divides .
Style APA, Harvard, Vancouver, ISO itp.
12

Valenti, Angela. "Torsion units in integral group rings". Proceedings of the American Mathematical Society 120, nr 1 (1.01.1994): 1. http://dx.doi.org/10.1090/s0002-9939-1994-1186996-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Parmenter, M. M. "UNITS AND ISOMORPHISM IN GROUP RINGS". Quaestiones Mathematicae 8, nr 1 (styczeń 1985): 9–14. http://dx.doi.org/10.1080/16073606.1985.9631896.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Lee, Gregory T. "Nilpotent Symmetric Units in Group Rings". Communications in Algebra 31, nr 2 (4.01.2003): 581–608. http://dx.doi.org/10.1081/agb-120017331.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

DOOMS, ANN. "UNITARY UNITS IN INTEGRAL GROUP RINGS". Journal of Algebra and Its Applications 05, nr 01 (luty 2006): 43–52. http://dx.doi.org/10.1142/s0219498806001569.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Juriaans, Stanley Orlando. "Torsion units in integral group rings". Communications in Algebra 22, nr 12 (styczeń 1994): 4905–13. http://dx.doi.org/10.1080/00927879408825111.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Milies, Polcino C., i Sudarshan K. Sehgal. "Central units of integral group rings*". Communications in Algebra 27, nr 12 (styczeń 1999): 6233–41. http://dx.doi.org/10.1080/00927879908826819.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Hoechsmann, Klaus. "Constructing units in commutative group rings". Manuscripta Mathematica 75, nr 1 (grudzień 1992): 5–23. http://dx.doi.org/10.1007/bf02567067.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Li, Yuanlin, i M. M. Parmenter. "Hypercentral units in integral group rings". Proceedings of the American Mathematical Society 129, nr 8 (23.01.2001): 2235–38. http://dx.doi.org/10.1090/s0002-9939-01-05848-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Jespers, Eric, Gabriela Olteanu, Ángel del Río i Inneke Van Gelder. "Central units of integral group rings". Proceedings of the American Mathematical Society 142, nr 7 (27.03.2014): 2193–209. http://dx.doi.org/10.1090/s0002-9939-2014-11958-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Luthar, I. S., i I. B. S. Passi. "Torsion units in matrix group rings". Communications in Algebra 20, nr 4 (styczeń 1992): 1223–28. http://dx.doi.org/10.1080/00927879208824400.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Danchev, Peter. "Idempotent Units of Commutative Group Rings". Communications in Algebra 38, nr 12 (15.12.2010): 4649–54. http://dx.doi.org/10.1080/00927871003742842.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Bovdi, Victor, i M. M. Parmenter. "Symmetric units in integral group rings". Publicationes Mathematicae Debrecen 50, nr 3-4 (1.04.1997): 369–72. http://dx.doi.org/10.5486/pmd.1997.1853.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Neisse, Olaf, i Sudarshan K. Sehgal. "Gauss Units in Integral Group Rings". Journal of Algebra 204, nr 2 (czerwiec 1998): 588–96. http://dx.doi.org/10.1006/jabr.1997.7379.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Bovdi, A., Z. Marciniak i S. K. Sehgal. "Torsion Units in Infinite Group Rings". Journal of Number Theory 47, nr 3 (czerwiec 1994): 284–99. http://dx.doi.org/10.1006/jnth.1994.1038.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Giambruno, A., E. Jespers i A. Valenti. "Group identities on units of rings". Archiv der Mathematik 63, nr 4 (październik 1994): 291–96. http://dx.doi.org/10.1007/bf01189563.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Riley, David M. "Group Rings With Hypercentral Unit Groups". Canadian Journal of Mathematics 43, nr 2 (1.04.1991): 425–34. http://dx.doi.org/10.4153/cjm-1991-025-3.

Pełny tekst źródła
Streszczenie:
AbstractLet KG be the group ring of a group G over a field K and let U(KG) be its group of units. If K has characteristic p > 0 and G contains p-elements, then it is proved that U(KG) is hypercentral if and only if G is nilpotent and G′ is a finite p-group.
Style APA, Harvard, Vancouver, ISO itp.
28

Jespers, Eric, i G. Leal. "Units of integral group rings of hamiltonian groups*". Communications in Algebra 23, nr 2 (styczeń 1995): 623–28. http://dx.doi.org/10.1080/00927879508825238.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Nezhmetdinov, Timur I. "Groups of Units of Finite Commutative Group Rings*". Communications in Algebra 38, nr 12 (15.12.2010): 4669–81. http://dx.doi.org/10.1080/00927870903451918.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Herman, Allen, i Gurmail Singh. "On the Torsion Units of Integral Adjacency Algebras of Finite Association Schemes". Algebra 2014 (16.12.2014): 1–5. http://dx.doi.org/10.1155/2014/842378.

Pełny tekst źródła
Streszczenie:
Torsion units of group rings have been studied extensively since the 1960s. As association schemes are generalization of groups, it is natural to ask about torsion units of association scheme rings. In this paper we establish some results about torsion units of association scheme rings analogous to basic results for torsion units of group rings.
Style APA, Harvard, Vancouver, ISO itp.
31

GONÇALVES, JAIRO Z., i ÁNGEL DEL RÍO. "A SURVEY ON FREE SUBGROUPS IN THE GROUP OF UNITS OF GROUP RINGS". Journal of Algebra and Its Applications 12, nr 06 (9.05.2013): 1350004. http://dx.doi.org/10.1142/s0219498813500047.

Pełny tekst źródła
Streszczenie:
In this survey we revise the methods and results on the existence and construction of free groups of units in group rings, with special emphasis in integral group rings over finite groups and group algebras. We also survey results on constructions of free groups generated by elements which are either symmetric or unitary with respect to some involution and other results on which integral group rings have large subgroups which can be constructed with free subgroups and natural group operations.
Style APA, Harvard, Vancouver, ISO itp.
32

Goodaire, E. G., E. Jespers i M. M. Parmenter. "Determining Units in Some Integral Group Rings". Canadian Mathematical Bulletin 33, nr 2 (1.06.1990): 242–46. http://dx.doi.org/10.4153/cmb-1990-038-8.

Pełny tekst źródła
Streszczenie:
In this brief note, we will show how in principle to find all units in the integral group ring ZG, whenever G is a finite group such that and Z(G) each have exponent 2, 3, 4 or 6. Special cases include the dihedral group of order 8, whose units were previously computed by Polcino Milies [5], and the group discussed by Ritter and Sehgal [6]. Other examples of noncommutative integral group rings whose units have been computed include , but in general very little progress has been made in this direction. For basic information on units in group rings, the reader is referred to Sehgal [7].
Style APA, Harvard, Vancouver, ISO itp.
33

Jespers, E. "Bicyclic Units in some Integral Group Rings". Canadian Mathematical Bulletin 38, nr 1 (1.03.1995): 80–86. http://dx.doi.org/10.4153/cmb-1995-010-4.

Pełny tekst źródła
Streszczenie:
AbstractA description is given of the unit group for the two groups G = D12 and G = D8 × C2. In particular, it is shown that in both cases the bicyclic units generate a torsion-free normal complement. It follows that the Bass-cyclic units together with the bicyclic units generate a subgroup of finite index in for all n ≥ 3.
Style APA, Harvard, Vancouver, ISO itp.
34

Garcia, Vitor Araujo, i Raul Antonio Ferraz. "Central units in some integral group rings". Communications in Algebra 49, nr 9 (27.04.2021): 4000–4015. http://dx.doi.org/10.1080/00927872.2021.1910284.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Bien, M. H., M. Ramezan-Nassab i D. H. Viet. "*-Group identities on units of division rings". Communications in Algebra 49, nr 7 (5.03.2021): 3010–19. http://dx.doi.org/10.1080/00927872.2021.1887205.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Ritter, J{ürgen, i Sudarshan K. Sehgal. "Integral group rings with trivial central units". Proceedings of the American Mathematical Society 108, nr 2 (1.02.1990): 327. http://dx.doi.org/10.1090/s0002-9939-1990-0994785-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Parmenter, M. M. "Conjugates of units in integral group rings". Communications in Algebra 23, nr 14 (styczeń 1995): 5503–7. http://dx.doi.org/10.1080/00927879508825548.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Johnson, F. E. A. "Arithmetic rigidity and units in group rings". Transactions of the American Mathematical Society 353, nr 11 (9.05.2001): 4623–35. http://dx.doi.org/10.1090/s0002-9947-01-02816-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Hoechsmann, K., i S. K. Sehgal. "Units in regular abelian p-group rings". Journal of Number Theory 30, nr 3 (listopad 1988): 375–81. http://dx.doi.org/10.1016/0022-314x(88)90009-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Li, Yuanlin, i M. M. Parmenter. "Central units in integral group rings II". International Journal of Algebra 8 (2014): 47–55. http://dx.doi.org/10.12988/ija.2014.311106.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Lee, Gregory T., i Ernesto Spinelli. "Group Rings Whose Symmetric Units are Solvable". Communications in Algebra 37, nr 5 (6.05.2009): 1604–18. http://dx.doi.org/10.1080/00927870802116539.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Ferraz, Raul Antonio, i Juan Jacobo Simón-Pınero. "Central Units in Metacyclic Integral Group Rings". Communications in Algebra 36, nr 10 (13.10.2008): 3708–22. http://dx.doi.org/10.1080/00927870802158028.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Lee, Gregory T., Sudarshan K. Sehgal i Ernesto Spinelli. "Group rings whose unitary units are nilpotent". Journal of Algebra 410 (lipiec 2014): 343–54. http://dx.doi.org/10.1016/j.jalgebra.2014.01.041.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Hoechsmann, Klaus, i Jürgen Ritter. "Constructible units in abelian p-group rings". Journal of Pure and Applied Algebra 68, nr 3 (grudzień 1990): 325–39. http://dx.doi.org/10.1016/0022-4049(90)90088-y.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Oliver, Robert. "Central units in p-adic group rings". K-Theory 1, nr 5 (wrzesień 1987): 507–13. http://dx.doi.org/10.1007/bf00536982.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Hoechsmann, Klaus, i Sudarshan K. Sehgal. "Units in regular elementary abelian group rings". Archiv der Mathematik 47, nr 5 (listopad 1986): 413–17. http://dx.doi.org/10.1007/bf01189981.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Gonçalves, Daniel. "Simplicity of Partial Skew Group Rings of Abelian Groups". Canadian Mathematical Bulletin 57, nr 3 (1.09.2014): 511–19. http://dx.doi.org/10.4153/cmb-2014-011-1.

Pełny tekst źródła
Streszczenie:
AbstractLet A be a ring with local units, E a set of local units for A, G an abelian group, and α a partial action of G by ideals of A that contain local units. We show that A*αG is simple if and only if A is G-simple and the center of the corner eδ0(A*αGe)eδ0 is a field for all e ∊ E. We apply the result to characterize simplicity of partial skew group rings in two cases, namely for partial skew group rings arising from partial actions by clopen subsets of a compact set and partial actions on the set level.
Style APA, Harvard, Vancouver, ISO itp.
48

Allen, P. J., i C. Hobby. "Units in Integral Group Rings of Some Metacyclic Groups". Canadian Mathematical Bulletin 30, nr 2 (1.06.1987): 231–40. http://dx.doi.org/10.4153/cmb-1987-033-5.

Pełny tekst źródła
Streszczenie:
AbstractLet p be odd prime and suppose that G = 〈a, b〉 where ap-1 = bp = 1, a-1 ba = br, and r is a generator of the multiplicative group of integers mod p. An explicit characterization of the group of normalized units V of the group ring ZG is given in terms of a subgroup of GL(p - 1, Z). This characterization is used to exhibit a normal complement for G in V.
Style APA, Harvard, Vancouver, ISO itp.
49

Jespers, Eric, Guilherme Leal i C. Polcino Milies. "Units of Integral Group Rings of Some Metacyclic Groups". Canadian Mathematical Bulletin 37, nr 2 (1.06.1994): 228–37. http://dx.doi.org/10.4153/cmb-1994-034-0.

Pełny tekst źródła
Streszczenie:
AbstractIn this paper, we consider all metacyclic groups of the type 〈a,b | an - 1, b2 = 1, ba = aib〉 and give a concrete description of their rational group algebras. As a consequence we obtain, in a natural way, units which generate a subgroup of finite index in the full unit group, for almost all such groups.
Style APA, Harvard, Vancouver, ISO itp.
50

Dokuchaev, Michael A., i Sudarshan K. Sehgal. "Torsion units in integral group rings of solvable groups". Communications in Algebra 22, nr 12 (styczeń 1994): 5005–20. http://dx.doi.org/10.1080/00927879408825118.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii