Rozprawy doktorskie na temat „Units in rings and group rings”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych rozpraw doktorskich naukowych na temat „Units in rings and group rings”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj rozprawy doktorskie z różnych dziedzin i twórz odpowiednie bibliografie.
Li, Yuanlin. "Units in integral group rings". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/nq23107.pdf.
Pełny tekst źródłaFerguson, Ronald Aubrey. "Units in integral cyclic group rings for order L§RP§S". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq25045.pdf.
Pełny tekst źródłaFaccin, Paolo. "Computational problems in algebra: units in group rings and subalgebras of real simple Lie algebras". Doctoral thesis, Università degli studi di Trento, 2014. https://hdl.handle.net/11572/368142.
Pełny tekst źródłaFaccin, Paolo. "Computational problems in algebra: units in group rings and subalgebras of real simple Lie algebras". Doctoral thesis, University of Trento, 2014. http://eprints-phd.biblio.unitn.it/1182/1/PhdThesisFaccinPaolo.pdf.
Pełny tekst źródłaSilva, Renata Rodrigues Marcuz. "Unidades de ZC2p e Aplicações". Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-27062012-154612/.
Pełny tekst źródłaLet p be an odd prime integer, be a pth primitive root of unity, Cn be the cyclic group of order n, and U(ZG) the units of the Integral Group Ring ZG: Consider ui := 1++2 +: : :+i1 for 2 i p + 1 2 : In our study we describe explicitly the generator set of U(ZC2p); where p is such that S := f1; ; u2; : : : ; up1 2 g generates U(Z[]) and U(Zp) is such that U(Zp) = 2 or U(Zp)2 = 2 and 1 =2 U(Zp)2; which occurs for p = 7; 11; 13; 19; 23; 29; 37; 53; 59; 61, and 67: For another values of p we don\'t know if such conditions hold. In addition, under suitable hypotheses, we extend these ideas and build a generator set of U(Z(C2p C2)) and U(Z(C2p C2 C2)): Besides that, using the previous results, we exhibit a generator set for the central units of the group ring Z(Cp Q8) where Q8 represents the quaternion group.
Kitani, Patricia Massae. "Unidades de ZCpn". Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-26042012-235529/.
Pełny tekst źródłaLet Cp be a cyclic group of order p, where p is a prime integer such that S = {1, , 1 + \\theta, 1 +\\theta +\\theta ^2 , · · · , 1 + \\theta + · · · +\\theta ^{p-3/2}} generates the group of units of Z[\\theta] and is a primitive pth root of 1 over Q. In the article \"Units of ZCp\" , Ferraz gave an easy way to nd a set of multiplicatively independent generators of the group of units of the integral group ring ZCp . We extended this result for ZCp^n , provided that a set similar to S generates the group of units of Z[\\theta]. This occurs, for example, when \\phi(p^n)\\leq 66. We described the group of units of ZCp^n as the product ±ker(\\pi_1) × Im(\\pi_1), where \\pi_1 is a group homomorphism. Moreover, we explicited a basis of ker(\\pi_1) and I m(\\pi_1).
Stack, Cora. "Some results on the structure of the groups of units of finite completely primary rings and on the structure of finite dimensional nilpotent algebras". Thesis, University of Reading, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.262483.
Pełny tekst źródłaFilho, Antonio Calixto de Souza. "A importância das unidades centrais em anéis de grupo". Universidade de São Paulo, 2000. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-11122008-214317/.
Pełny tekst źródłaIn this dissertation, we discuss the Problem of the Isomorphism in group rings for infinite groups as G × C. This is presented in [14]. Such article states a theorem which shows an equivalence to the isomorphism problem between that infinite class group and finite groups verifying the Normalizer Conjecture. Our main purpose is the Normalizer Conjecture and the Isomorphism Conjecture relationship remarked in the cited article to the groups above. Following, we consider a group ring theorem to the central units subgroup firstly communicated in [9] and generalized in [17] and [7]. We point up the importance of such theorem to the Group Ring Theory and we give a short and a new demonstration to Mazurs equivalence theorem from using a suitable central unit altogether with its structure lightly by the Central Unit Theorem on focus. We conclude this work sketching the ZA5 central units subgroup on showing it is a free finitely generated group of rank 1 from the presenting construction in Aleevs article [1].
Immormino, Nicholas A. "Clean Rings & Clean Group Rings". Bowling Green State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1374247918.
Pełny tekst źródłaWeber, Harald. "Group rings and twisted group rings for a series of p-groups". [S.l. : s.n.], 2003. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB10761310.
Pełny tekst źródłaTurner, Emma Louise. "k-S-Rings". BYU ScholarsArchive, 2012. https://scholarsarchive.byu.edu/etd/3670.
Pełny tekst źródłaDexter, Cache Porter. "Schur Rings over Infinite Groups". BYU ScholarsArchive, 2019. https://scholarsarchive.byu.edu/etd/8831.
Pełny tekst źródłaSrivastava, Ashish K. "Rings Characterized by Properties of Direct Sums of Modules and on Rings Generated by Units". Ohio University / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1181845354.
Pełny tekst źródłaStrouthos, I. "Stably free modules over group rings". Thesis, University College London (University of London), 2011. http://discovery.ucl.ac.uk/1325632/.
Pełny tekst źródłaWelch, Amanda Renee. "Characterizing Zero Divisors of Group Rings". Thesis, Virginia Tech, 2015. http://hdl.handle.net/10919/52949.
Pełny tekst źródłaMaster of Science
Archer, Louise. "Hall algebras and Green rings". Thesis, University of Oxford, 2005. http://ora.ox.ac.uk/objects/uuid:960af4b3-8f32-4263-9142-261f49d52405.
Pełny tekst źródłaKahn, Eric B. "THE GENERALIZED BURNSIDE AND REPRESENTATION RINGS". UKnowledge, 2009. http://uknowledge.uky.edu/gradschool_diss/707.
Pełny tekst źródła邵慰慈 i Wai-chee Shiu. "The algebraic structure and computation of Schur rings". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1992. http://hub.hku.hk/bib/B31233181.
Pełny tekst źródłaShiu, Wai-chee. "The algebraic structure and computation of Schur rings /". [Hong Kong : University of Hong Kong], 1992. http://sunzi.lib.hku.hk/hkuto/record.jsp?B1329037X.
Pełny tekst źródłaMeyer, David Christopher. "Universal deformation rings and fusion". Diss., University of Iowa, 2015. https://ir.uiowa.edu/etd/1883.
Pełny tekst źródłaLee, Gregory Thomas. "Symmetric elements in group rings and related problems". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ59994.pdf.
Pełny tekst źródłaGjerling, Andreas. "On rings of quotients of soluble group algebras". Thesis, Queen Mary, University of London, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.286813.
Pełny tekst źródłaAlahmadi, Adel Naif M. "Injectivity, Continuity, and CS Conditions on Group Rings". Ohio University / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1163521064.
Pełny tekst źródłaMannan, W. H. "Low dimensional algebraic complexes over integral group rings". Thesis, University College London (University of London), 2007. http://discovery.ucl.ac.uk/1446153/.
Pełny tekst źródłaKerby, Brent L. "Rational Schur Rings over Abelian Groups". BYU ScholarsArchive, 2008. https://scholarsarchive.byu.edu/etd/1491.
Pełny tekst źródła邵慰慈 i Wai-chee Shiu. "Schur rings over dihedral groups of order 2p". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1989. http://hub.hku.hk/bib/B31208873.
Pełny tekst źródłaShiu, Wai-chee. "Schur rings over dihedral groups of order 2p /". [Hong Kong : University of Hong Kong], 1989. http://sunzi.lib.hku.hk/hkuto/record.jsp?B12364770.
Pełny tekst źródłaEisele, Florian [Verfasser]. "Group rings over the p-Adic integers / Florian Eisele". Aachen : Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2012. http://d-nb.info/1022616773/34.
Pełny tekst źródłaAhmed, Iftikhar. "Projective modules of group rings over quadratic number fields". Thesis, Durham University, 1994. http://etheses.dur.ac.uk/5669/.
Pełny tekst źródłaDOROBISZ, KRZYSZTOF. "INVERSE PROBLEMS FOR UNIVERSAL DEFORMATION RINGS OF GROUP REPRESENTATIONS". Doctoral thesis, Università degli Studi di Milano, 2015. http://hdl.handle.net/2434/268872.
Pełny tekst źródłaJuglal, Shaanraj. "Prime near-ring modules and their links with the generalised group near-ring". Thesis, Nelson Mandela Metropolitan University, 2007. http://hdl.handle.net/10948/714.
Pełny tekst źródłaSemikina, Iuliia [Verfasser]. "G-theory of group rings for finite groups / Iuliia Semikina". Bonn : Universitäts- und Landesbibliothek Bonn, 2018. http://d-nb.info/1173789642/34.
Pełny tekst źródłaTay, Julian Boon Kai. "Poincaré Polynomial of FJRW Rings and the Group-Weights Conjecture". BYU ScholarsArchive, 2013. https://scholarsarchive.byu.edu/etd/3604.
Pełny tekst źródłaRenshaw, James Henry. "Flatness, extension and amalgamation in monoids, semigroups and rings". Thesis, University of St Andrews, 1986. http://hdl.handle.net/10023/11071.
Pełny tekst źródłaLännström, Daniel. "The structure of epsilon-strongly graded rings with applications to Leavitt path algebras and Cuntz-Pimsner rings". Licentiate thesis, Blekinge Tekniska Högskola, Institutionen för matematik och naturvetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-17809.
Pełny tekst źródłaPopov, Vladimir L., i vladimir@popov msk su. "Generators and Relations of the Affine Coordinate Rings of Connected". ESI preprints, 2000. ftp://ftp.esi.ac.at/pub/Preprints/esi972.ps.
Pełny tekst źródłaPilewski, Nicholas J. "Units and Leavitt Path Algebras". Ohio University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1427464498.
Pełny tekst źródłaGrover, Parnesh Kumar Carleton University Dissertation Mathematics. "Orderings on division rings and normal subgroup structure of a unitary group". Ottawa, 1989.
Znajdź pełny tekst źródłaNguyen, Long Pham Bao. "Fusion of Character Tables and Schur Rings of Dihedral Groups". BYU ScholarsArchive, 2008. https://scholarsarchive.byu.edu/etd/1429.
Pełny tekst źródłaHelveston, John Knox. "Life rings a manual for developing small group ministry in an established church /". Theological Research Exchange Network (TREN), 1997. http://www.tren.com.
Pełny tekst źródłaHarris, Julianne S. "On the mod 2 general linear group homology of totally real number rings /". Thesis, Connect to this title online; UW restricted, 1997. http://hdl.handle.net/1773/5812.
Pełny tekst źródłaSzabo, Steve. "Convolutional Codes with Additional Structure and Block Codes over Galois Rings". Ohio University / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1257792383.
Pełny tekst źródłaKöster, Iris [Verfasser], i Wolfgang [Akademischer Betreuer] Kimmerle. "Sylow numbers in character tables and integral group rings / Iris Köster ; Betreuer: Wolfgang Kimmerle". Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2017. http://d-nb.info/1130148572/34.
Pełny tekst źródłaBächle, Andreas [Verfasser], i Wolfgang [Akademischer Betreuer] Kimmerle. "On torsion subgroups and their normalizers in integral group rings / Andreas Bächle. Betreuer: Wolfgang Kimmerle". Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2013. http://d-nb.info/1029460787/34.
Pełny tekst źródłaLong, Jane Holsapple. "The cohomology rings of the special affine group of Fp^2 and of PSL(3,p)". College Park, Md.: University of Maryland, 2008. http://hdl.handle.net/1903/8458.
Pełny tekst źródłaThesis research directed by: Dept. of Mathematics. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Gandhi, Raj. "Oriented Cohomology Rings of the Semisimple Linear Algebraic Groups of Ranks 1 and 2". Thesis, Université d'Ottawa / University of Ottawa, 2021. http://hdl.handle.net/10393/42566.
Pełny tekst źródłaSommerhäuser, Yorck. "Yetter-Drinfel'd-Hopf algebras over groups of prime order /". Berlin [u.a.] : Springer, 2002. http://www.loc.gov/catdir/enhancements/fy0817/2002070799-d.html.
Pełny tekst źródłaPitt, Melanie A. 1980. "Main group supramolecular coordination chemistry: Design strategies and dynamic assemblies". Thesis, University of Oregon, 2009. http://hdl.handle.net/1794/10287.
Pełny tekst źródłaMain group supramolecular chemistry is a rapidly expanding field that combines the tools of coordination chemistry with the unusual and frequently unexpected coordination preferences exhibited by the main group elements. Application of established supramolecular design principles to those elements provides access to novel structure types and the possibility of new functionality introduced by the rich chemistry of the main group. Chapter I is a general review of the field of main group supramolecular chemistry, focusing in particular on the aspects of coordination chemistry and rational design strategies that have been thus far used to prepare polynuclear "metal"-ligand assemblies. Chapter II is a discussion of work toward supramolecular assemblies based on the coordination preferences of lead(II), in particular focusing on the 2-mercaptoacetamide and arylthiolate functionalities to target four-coordinate and three-coordinate geometries, respectively. Several possible avenues for further pursuing this research are suggested, with designs for ligands that may provide a more fruitful approach to the coordination of lead(II). Chapter III deals with the preparation of As 2 L 3 assemblies based on flexible ligand scaffolds. These assemblies exhibit structural changes in response to temperature and solvent, which may provide some insight into the subtle shape requirements involved in supramolecular guest binding. Chapter IV continues this work with an examination of how ligand structure affects mechanical coupling of stereochemistry between metal centers when the chelate ring is completed by a secondary bonding interaction such as the As-π contact. Finally, Chapter V presents a crystallographic and synthetic study of the nature of the interaction between pnictogens and arene rings. This interaction is ubiquitous in the coordination chemistry performed in the Johnson laboratory; understanding the role these interactions play in determining the final structure of supramolecular assemblies is vital to the preparation of more complex structures. Chapter VI presents a set of conclusions and outlook for future work on lead(II) supramolecular assemblies and the dynamic assemblies prepared from flexible organic scaffolds. This dissertation contains previously published and coauthored material.
Committee in charge: Kenneth Doxsee, Chairperson, Chemistry; Darren Johnson, Advisor, Chemistry; David Tyler, Member, Chemistry; Victoria DeRose, Member, Chemistry; Stephen Remington, Outside Member, Physics
Iwaki, Edson Ryoji Okamoto. "Unidades Hipercentrais em Anéis de Grupo". Universidade de São Paulo, 2000. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-20052007-112821/.
Pełny tekst źródłaA great deal of problems in Group Rings centralize around the study of its group of units. Hence it becomes important to know the structure of the group of units U(ZG). But with a few exceptions, we do not have much information about its structure. Trying to obtain more information about the structure of U(ZG), we could, for example, study the upper central series of U(ZG). In case G is finite, a result of Gruenberg implies that U(ZG) has finite central height. This fact allow us to study the hypercenter of U(ZG). In order to obtain more information about the hypercentral units of U(ZG) we need a description of the torsion subgroup of the hypercenter of U(ZG) which is provided by results of Bovdi on periodic normal subgroups of U(ZG). Gruenberg\'s result suscites some questions which we will try to answer in this work. Among them: The upper bound for the upper central serie of U(ZG) depends on of the group G? How could we determine the central height of U(ZG)? It is interesting to see how we could obtain an estimative for the central height of U(ZG) using the Normalizer Conjecture. All these questions are answered in chapter 4, as a consequence of Arora, Hales and Passi\'s work which guarantees us that in this case the central height of U(ZG) is at most 2. Nevertheless this result of Arora, Hales and Passi doesn\'t use the Normalizer Conjecture, we suppose here that the Normalizer Conjecture holds and used a result of Gross to obtain estimatives to the central height of U(ZG). Our aim was to connect the question discussed ahead with a intensive research problem, the Normalizer Conjecture. This arises the following question: For which groups does U(ZG) have central height exactly 0, 1 or 2? This question is also answered by Arora, Hales and Passi. Finally, another result of Arora, Hales and Passi present us a characterization of the hypercenter of U(ZG), which surprisingly satisfies the condition presented in the Normalizer Conjecture. It is interesting to observe here the appearing of Normalizer Conjecture to obtain an estimative for the central height of U(ZG) and to obtain a characterization of the hypercenter of U(ZG). In chapter 5 we present a result of Li which generalizes the result of Arora, Hales and Passi to the case when G is a periodic group. He proves that the central height of U(ZG) is also at most 2. Introducing the concept of n-center he was able to use the results about the hypercenter of U(ZG) to obtain a characterization of the n-center of U(ZG).
Pallekonda, Seshendra. "Bounded category of an exact category". Diss., Online access via UMI:, 2008.
Znajdź pełny tekst źródła