Gotowa bibliografia na temat „Units in rings and group rings”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Units in rings and group rings”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Units in rings and group rings"
Jespers, Eric, i C. Polcino Milies. "Units of group rings". Journal of Pure and Applied Algebra 107, nr 2-3 (marzec 1996): 233–51. http://dx.doi.org/10.1016/0022-4049(95)00066-6.
Pełny tekst źródłaKumari, P., M. Sahai i R. K. Sharma. "Jordan regular units in rings and group rings". Ukrains’kyi Matematychnyi Zhurnal 75, nr 3 (11.04.2023): 351–63. http://dx.doi.org/10.37863/umzh.v75i3.1130.
Pełny tekst źródłaBartholdi, Laurent. "On Gardam's and Murray's units in group rings". Algebra and Discrete Mathematics 35, nr 1 (2023): 22–29. http://dx.doi.org/10.12958/adm2053.
Pełny tekst źródłaFarkas, Daniel R., i Peter A. Linnell. "Trivial Units in Group Rings". Canadian Mathematical Bulletin 43, nr 1 (1.03.2000): 60–62. http://dx.doi.org/10.4153/cmb-2000-008-0.
Pełny tekst źródłaBist, V. "Torsion units in group rings". Publicacions Matemàtiques 36 (1.01.1992): 47–50. http://dx.doi.org/10.5565/publmat_36192_04.
Pełny tekst źródłaChatzidakis, Zoé, i Peter Pappas. "Units in Abelian Group Rings". Journal of the London Mathematical Society s2-44, nr 1 (sierpień 1991): 9–23. http://dx.doi.org/10.1112/jlms/s2-44.1.9.
Pełny tekst źródłaDekimpe, Karel. "Units in group rings of crystallographic groups". Fundamenta Mathematicae 179, nr 2 (2003): 169–78. http://dx.doi.org/10.4064/fm179-2-4.
Pełny tekst źródłaHerman, Allen, Yuanlin Li i M. M. Parmenter. "Trivial Units for Group Rings with G-adapted Coefficient Rings". Canadian Mathematical Bulletin 48, nr 1 (1.03.2005): 80–89. http://dx.doi.org/10.4153/cmb-2005-007-1.
Pełny tekst źródłaHerman, Allen, i Yuanlin Li. "Trivial units for group rings over rings of algebraic integers". Proceedings of the American Mathematical Society 134, nr 3 (18.07.2005): 631–35. http://dx.doi.org/10.1090/s0002-9939-05-08018-4.
Pełny tekst źródłaHoechsmann, K., i S. K. Sehgal. "Integral Group Rings Without Proper Units". Canadian Mathematical Bulletin 30, nr 1 (1.03.1987): 36–42. http://dx.doi.org/10.4153/cmb-1987-005-6.
Pełny tekst źródłaRozprawy doktorskie na temat "Units in rings and group rings"
Li, Yuanlin. "Units in integral group rings". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/nq23107.pdf.
Pełny tekst źródłaFerguson, Ronald Aubrey. "Units in integral cyclic group rings for order L§RP§S". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq25045.pdf.
Pełny tekst źródłaFaccin, Paolo. "Computational problems in algebra: units in group rings and subalgebras of real simple Lie algebras". Doctoral thesis, Università degli studi di Trento, 2014. https://hdl.handle.net/11572/368142.
Pełny tekst źródłaFaccin, Paolo. "Computational problems in algebra: units in group rings and subalgebras of real simple Lie algebras". Doctoral thesis, University of Trento, 2014. http://eprints-phd.biblio.unitn.it/1182/1/PhdThesisFaccinPaolo.pdf.
Pełny tekst źródłaSilva, Renata Rodrigues Marcuz. "Unidades de ZC2p e Aplicações". Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-27062012-154612/.
Pełny tekst źródłaLet p be an odd prime integer, be a pth primitive root of unity, Cn be the cyclic group of order n, and U(ZG) the units of the Integral Group Ring ZG: Consider ui := 1++2 +: : :+i1 for 2 i p + 1 2 : In our study we describe explicitly the generator set of U(ZC2p); where p is such that S := f1; ; u2; : : : ; up1 2 g generates U(Z[]) and U(Zp) is such that U(Zp) = 2 or U(Zp)2 = 2 and 1 =2 U(Zp)2; which occurs for p = 7; 11; 13; 19; 23; 29; 37; 53; 59; 61, and 67: For another values of p we don\'t know if such conditions hold. In addition, under suitable hypotheses, we extend these ideas and build a generator set of U(Z(C2p C2)) and U(Z(C2p C2 C2)): Besides that, using the previous results, we exhibit a generator set for the central units of the group ring Z(Cp Q8) where Q8 represents the quaternion group.
Kitani, Patricia Massae. "Unidades de ZCpn". Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-26042012-235529/.
Pełny tekst źródłaLet Cp be a cyclic group of order p, where p is a prime integer such that S = {1, , 1 + \\theta, 1 +\\theta +\\theta ^2 , · · · , 1 + \\theta + · · · +\\theta ^{p-3/2}} generates the group of units of Z[\\theta] and is a primitive pth root of 1 over Q. In the article \"Units of ZCp\" , Ferraz gave an easy way to nd a set of multiplicatively independent generators of the group of units of the integral group ring ZCp . We extended this result for ZCp^n , provided that a set similar to S generates the group of units of Z[\\theta]. This occurs, for example, when \\phi(p^n)\\leq 66. We described the group of units of ZCp^n as the product ±ker(\\pi_1) × Im(\\pi_1), where \\pi_1 is a group homomorphism. Moreover, we explicited a basis of ker(\\pi_1) and I m(\\pi_1).
Stack, Cora. "Some results on the structure of the groups of units of finite completely primary rings and on the structure of finite dimensional nilpotent algebras". Thesis, University of Reading, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.262483.
Pełny tekst źródłaFilho, Antonio Calixto de Souza. "A importância das unidades centrais em anéis de grupo". Universidade de São Paulo, 2000. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-11122008-214317/.
Pełny tekst źródłaIn this dissertation, we discuss the Problem of the Isomorphism in group rings for infinite groups as G × C. This is presented in [14]. Such article states a theorem which shows an equivalence to the isomorphism problem between that infinite class group and finite groups verifying the Normalizer Conjecture. Our main purpose is the Normalizer Conjecture and the Isomorphism Conjecture relationship remarked in the cited article to the groups above. Following, we consider a group ring theorem to the central units subgroup firstly communicated in [9] and generalized in [17] and [7]. We point up the importance of such theorem to the Group Ring Theory and we give a short and a new demonstration to Mazurs equivalence theorem from using a suitable central unit altogether with its structure lightly by the Central Unit Theorem on focus. We conclude this work sketching the ZA5 central units subgroup on showing it is a free finitely generated group of rank 1 from the presenting construction in Aleevs article [1].
Immormino, Nicholas A. "Clean Rings & Clean Group Rings". Bowling Green State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1374247918.
Pełny tekst źródłaWeber, Harald. "Group rings and twisted group rings for a series of p-groups". [S.l. : s.n.], 2003. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB10761310.
Pełny tekst źródłaKsiążki na temat "Units in rings and group rings"
Sehgal, Sudarshan K. Units in integral group rings. Burnt Mill, Harlow, Essex, England: Longman Scientific & Technical, 1993.
Znajdź pełny tekst źródłaUnit groups of group rings. London: Longman Scientific & Technical, 1989.
Znajdź pełny tekst źródłaKarpilovsky, Gregory. Unit groups of group rings. Harlow, Essex, England: Longman Scientific & Technical, 1989.
Znajdź pełny tekst źródłaGroup identities on units and symmetric units of group rings. London: Springer, 2010.
Znajdź pełny tekst źródłaLee, Gregory T. Group Identities on Units and Symmetric Units of Group Rings. London: Springer London, 2010. http://dx.doi.org/10.1007/978-1-84996-504-0.
Pełny tekst źródłaUnit groups of classical rings. Oxford: Clarendon Press, 1988.
Znajdź pełny tekst źródłaGiambruno, Antonio, César Polcino Milies i Sudarshan K. Sehgal, red. Groups, Rings and Group Rings. Providence, Rhode Island: American Mathematical Society, 2009. http://dx.doi.org/10.1090/conm/499.
Pełny tekst źródłaA, Giambruno, Milies César Polcino i Sehgal Sudarshan K. 1936-, red. Groups, rings, and group rings. Boca Raton: Chapman & Hall/CRC, 2006.
Znajdź pełny tekst źródłaFree group rings. Providence, R.I: American Mathematical Society, 1987.
Znajdź pełny tekst źródłaBergen, Jeffrey, Stefan Catoiu i William Chin, red. Groups, Rings, Group Rings, and Hopf Algebras. Providence, Rhode Island: American Mathematical Society, 2017. http://dx.doi.org/10.1090/conm/688.
Pełny tekst źródłaCzęści książek na temat "Units in rings and group rings"
Roggenkamp, Klaus W., i Martin J. Taylor. "Global units". W Group Rings and Class Groups, 60–73. Basel: Birkhäuser Basel, 1992. http://dx.doi.org/10.1007/978-3-0348-8611-6_8.
Pełny tekst źródłaPolcino Milies, César, i Sudarshan K. Sehgal. "Units of Group Rings". W Algebras and Applications, 233–86. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0405-3_8.
Pełny tekst źródłaRoggenkamp, Klaus W., i Martin J. Taylor. "The leading coefficient of units". W Group Rings and Class Groups, 15–20. Basel: Birkhäuser Basel, 1992. http://dx.doi.org/10.1007/978-3-0348-8611-6_4.
Pełny tekst źródłaLee, Gregory T. "Group Identities on Units of Group Rings". W Group Identities on Units and Symmetric Units of Group Rings, 1–43. London: Springer London, 2010. http://dx.doi.org/10.1007/978-1-84996-504-0_1.
Pełny tekst źródłaParmenter, M. M. "Central Units in Integral Group Rings". W Algebra, 111–16. Gurgaon: Hindustan Book Agency, 1999. http://dx.doi.org/10.1007/978-93-80250-94-6_8.
Pełny tekst źródłaParmenter, M. M. "Central Units in Integral Group Rings". W Algebra, 111–16. Basel: Birkhäuser Basel, 1999. http://dx.doi.org/10.1007/978-3-0348-9996-3_8.
Pełny tekst źródłaBhandari, Ashwani K., i I. B. S. Passi. "Unit Groups of Group Rings". W Algebra, 29–39. Gurgaon: Hindustan Book Agency, 1999. http://dx.doi.org/10.1007/978-93-80250-94-6_2.
Pełny tekst źródłaBhandari, Ashwani K., i I. B. S. Passi. "Unit Groups of Group Rings". W Algebra, 29–39. Basel: Birkhäuser Basel, 1999. http://dx.doi.org/10.1007/978-3-0348-9996-3_2.
Pełny tekst źródłaBächle, Andreas, Wolfgang Kimmerle i Leo Margolis. "Algorithmic Aspects of Units in Group Rings". W Algorithmic and Experimental Methods in Algebra, Geometry, and Number Theory, 1–22. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70566-8_1.
Pełny tekst źródłaLee, Gregory T. "Group Identities on Symmetric Units". W Group Identities on Units and Symmetric Units of Group Rings, 45–75. London: Springer London, 2010. http://dx.doi.org/10.1007/978-1-84996-504-0_2.
Pełny tekst źródłaStreszczenia konferencji na temat "Units in rings and group rings"
Kidner, Mike, Marty Johnson i Brad Batton. "Distributed Sensors for Active Structural Acoustic Control Using Large Hierarchical Control Systems". W ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-42271.
Pełny tekst źródłaFo¨llmer, Bernhard, i Armin Schnettler. "A Main Steam Safety Valve (MSSV) With “Fixed Blowdown” According to ASME Section III, Part NC-7512". W 10th International Conference on Nuclear Engineering. ASMEDC, 2002. http://dx.doi.org/10.1115/icone10-22521.
Pełny tekst źródłaKessler, Travis, Amina SubLaban i J. Hunter Mack. "Predicting the Cetane Number, Sooting Tendency, and Energy Density of Terpene Fuel Additives". W ASME 2022 ICE Forward Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/icef2022-91163.
Pełny tekst źródłaEpitropov, Yordan. "Semilinear isomorphisms of group rings". W The 5th Virtual International Conference on Advanced Research in Scientific Areas. Publishing Society, 2016. http://dx.doi.org/10.18638/arsa.2016.5.1.816.
Pełny tekst źródłaHurley, Paul, i Ted Hurley. "Module Codes in Group Rings". W 2007 IEEE International Symposium on Information Theory. IEEE, 2007. http://dx.doi.org/10.1109/isit.2007.4557511.
Pełny tekst źródłaLück, Wolfgang. "K- and L-theory of Group Rings". W Proceedings of the International Congress of Mathematicians 2010 (ICM 2010). Published by Hindustan Book Agency (HBA), India. WSPC Distribute for All Markets Except in India, 2011. http://dx.doi.org/10.1142/9789814324359_0087.
Pełny tekst źródłaKoeser, Philipp S., Frank Berbig, Florian Pohlmann-Tasche, Friedrich Dinkelacker, Yuesen Wang i Tian Tian. "Predictive Piston Cylinder Unit Simulation - Part II: Novel Methodology of Friction Simulation Validation Utilizing Floating-Liner Measurements". W WCX SAE World Congress Experience. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2023. http://dx.doi.org/10.4271/2023-01-0415.
Pełny tekst źródłaRuggiero, Alessandro G. "Comments on working group C: Methods". W Stability of particle motion in storage rings. AIP, 1992. http://dx.doi.org/10.1063/1.45101.
Pełny tekst źródłaMadlener, Klaus, i Birgit Reinert. "Computing Gröbner bases in monoid and group rings". W the 1993 international symposium. New York, New York, USA: ACM Press, 1993. http://dx.doi.org/10.1145/164081.164139.
Pełny tekst źródłaIselin, Christoph F. "Summary for working group A on short-term stability". W Stability of particle motion in storage rings. AIP, 1992. http://dx.doi.org/10.1063/1.45099.
Pełny tekst źródłaRaporty organizacyjne na temat "Units in rings and group rings"
Holmes, S. D., G. Dugan i J. Marriner. Report of the New Rings Study Group. Office of Scientific and Technical Information (OSTI), październik 1987. http://dx.doi.org/10.2172/5937717.
Pełny tekst źródła