Gotowa bibliografia na temat „Uniquely decodable code”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Uniquely decodable code”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Uniquely decodable code"

1

Austrin, Per, Petteri Kaski, Mikko Koivisto i Jesper Nederlof. "Sharper Upper Bounds for Unbalanced Uniquely Decodable Code Pairs". IEEE Transactions on Information Theory 64, nr 2 (luty 2018): 1368–73. http://dx.doi.org/10.1109/tit.2017.2688378.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Külekci, Muhammed Oğuzhan, i Yasin Öztürk. "Applications of Non-Uniquely Decodable Codes to Privacy-Preserving High-Entropy Data Representation". Algorithms 12, nr 4 (17.04.2019): 78. http://dx.doi.org/10.3390/a12040078.

Pełny tekst źródła
Streszczenie:
Non-uniquely-decodable (non-UD) codes can be defined as the codes that cannot be uniquely decoded without additional disambiguation information. These are mainly the class of non–prefix–free codes, where a code-word can be a prefix of other(s), and thus, the code-word boundary information is essential for correct decoding. Due to their inherent unique decodability problem, such non-UD codes have not received much attention except a few studies, in which using compressed data structures to represent the disambiguation information efficiently had been previously proposed. It had been shown before that the compression ratio can get quite close to Huffman/Arithmetic codes with an additional capability of providing direct access in compressed data, which is a missing feature in the regular Huffman codes. In this study we investigate non-UD codes in another dimension addressing the privacy of the high-entropy data. We particularly focus on such massive volumes, where typical examples are encoded video or similar multimedia files. Representation of such a volume with non–UD coding creates two elements as the disambiguation information and the payload, where decoding the original data from these elements becomes hard when one of them is missing. We make use of this observation for privacy concerns. and study the space consumption as well as the hardness of that decoding. We conclude that non-uniquely-decodable codes can be an alternative to selective encryption schemes that aim to secure only part of the data when data is huge. We provide a freely available software implementation of the proposed scheme as well.
Style APA, Harvard, Vancouver, ISO itp.
3

Kulhandjian, Michel, Claude D’Amours i Hovannes Kulhandjian. "Multiway Physical-Layer Network Coding via Uniquely Decodable Codes". Wireless Communications and Mobile Computing 2018 (28.06.2018): 1–8. http://dx.doi.org/10.1155/2018/2034870.

Pełny tekst źródła
Streszczenie:
We focus on a multiway relay channel (MWRC) network where two or more users simultaneously exchange information with each other through the help of a relay node. We propose for the first time to apply ternary uniquely decodable (UD) code sets that we have developed to allow each user to uniquely recover the information bits from the noisy channel environment. One of the key features of the proposed scheme is that it utilizes a very simple decoding algorithm, which requires only a few logical comparisons. Simulation results in terms of bit error rate (BER) demonstrate that the performance of the proposed decoder is almost as good as the maximum-likelihood (ML) decoder. In addition to that through simulations, we show that the proposed scheme can significantly improve the sum-rate capacity, which in turn can potentially improve overall throughput, as it needs only two time slots (TSs) to exchange information compared to the conventional methods.
Style APA, Harvard, Vancouver, ISO itp.
4

Woryna, Adam. "On the set of uniquely decodable codes with a given sequence of code word lengths". Discrete Mathematics 340, nr 2 (luty 2017): 51–57. http://dx.doi.org/10.1016/j.disc.2016.08.013.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

van den Braak, P. C., i H. van Tilborg. "A family of good uniquely decodable code pairs for the two-access binary adder channel". IEEE Transactions on Information Theory 31, nr 1 (styczeń 1985): 3–9. http://dx.doi.org/10.1109/tit.1985.1057004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Romashchenko, Andrei, Alexander Shen i Marius Zimand. "27 Open Problems in Kolmogorov Complexity". ACM SIGACT News 52, nr 4 (20.12.2021): 31–54. http://dx.doi.org/10.1145/3510382.3510389.

Pełny tekst źródła
Streszczenie:
This formula can be informally read as follows: the ith messagemi brings us log(1=pi) "bits of information" (whatever this means), and appears with frequency pi, so H is the expected amount of information provided by one random message (one sample of the random variable). Moreover, we can construct an optimal uniquely decodable code that requires about H (at most H + 1, to be exact) bits per message on average, and it encodes the ith message by approximately log(1=pi) bits, following the natural idea to use short codewords for frequent messages. This fits well the informal reading of the formula given above, and it is tempting to say that the ith message "contains log(1=pi) bits of information." Shannon himself succumbed to this temptation [46, p. 399] when he wrote about entropy estimates and considers Basic English and James Joyces's book "Finnegan's Wake" as two extreme examples of high and low redundancy in English texts. But, strictly speaking, one can speak only of entropies of random variables, not of their individual values, and "Finnegan's Wake" is not a random variable, just a specific string. Can we define the amount of information in individual objects?
Style APA, Harvard, Vancouver, ISO itp.
7

Vanroose, P., i E. C. van der Meulen. "Uniquely decodable codes for deterministic relay channels". IEEE Transactions on Information Theory 38, nr 4 (lipiec 1992): 1203–12. http://dx.doi.org/10.1109/18.144701.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Li, Yatian, Tianwen Geng i Shijie Gao. "Improve the throughput of M-to-1 free-space optical systems by employing uniquely decodable codes". Chinese Optics Letters 21, nr 3 (2023): 030603. http://dx.doi.org/10.3788/col202321.030603.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Singh, Amiya, Poonam Singh, Arash Amini i Farokh Marvasti. "Set of uniquely decodable codes for overloaded synchronous CDMA". IET Communications 10, nr 10 (1.07.2016): 1236–45. http://dx.doi.org/10.1049/iet-com.2015.0819.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Ni, J., i B. Honary. "System state-independent-unique-decodable CCMA codes". IEE Proceedings I Communications, Speech and Vision 140, nr 3 (1993): 185. http://dx.doi.org/10.1049/ip-i-2.1993.0028.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Uniquely decodable code"

1

Wiman, Mårten. "Improved Constructions of Unbalanced Uniquely Decodable Code Pairs". Thesis, KTH, Skolan för teknikvetenskap (SCI), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-210869.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Ni, Jian. "Connectivity, dynamic performance of random radio networks & state independent uniquely decodable codes, codeword synchronisation of collaborative coding multiple access communications". Thesis, University of Warwick, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.282534.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Liu, Chin-Fu, i 劉勁甫. "Analysis and Practice of Uniquely Decodable One-to-One Code". Thesis, 2013. http://ndltd.ncl.edu.tw/handle/99031796479112363191.

Pełny tekst źródła
Streszczenie:
碩士
國立交通大學
電信工程研究所
101
In this thesis, we consider the so-called uniquely decodable one-to-one code (UDOOC) that is formed by inserting a “comma” indicator, termed the unique word (UW), between consecutive one-to-one codewords for separation. Along this research direction, we first investigate the general combinatorial properties of UDOOCs, in particular the enumeration of UDOOC codewords for any (finite) codeword length. Based on the obtained formula on the number of length-n codewords for a given UW, the average codeword length of the optimal UDOOC for a given source statistics can be computed. Upper bounds on the average codeword length of UDOOCs are next established. The analysis on bounds of the average codeword length then leads to two asymptotic bounds on ultimate per-letter average codeword length, one of which is achievable and hence tight for a certain source statistics and UW, and the other of which proves the achievability of source entropy rate of UDOOCs when both the block size of source letters for UDOOC compression and UW length go to infinity. Efficient encoding and decoding algorithms for UDOOCs are subsequently given. Numerical results show that when grouping three English letters as a block, the UDOOCs with UW = 0001, 0000, 000001 and 000000 can respectively reach the compression rates of 3.531, 4.089, 4.115 and 4.709 bits per English letter (with the lengths of UWs included), where the source stream to be compressed is the book titled Alice’s Adventures in Wonderland. In comparison with the first-order Huffman code, the second-order Huffman code, the third-order Huffman code and the Lembel-Ziv code, which respectively achieve the compression of 3.940, 3.585, 3.226 and 6.028 bits per single English letter, the proposed UDOOCs can potentially in comparable compression rate to the Huffman code under similar decoding complexity and yield a better average codeword length than that of the Lempel-Ziv code, thereby confirming the practicability of the simple idea of separating OOC codewords by UWs.
Style APA, Harvard, Vancouver, ISO itp.
4

Shivkumar, K. M. "On Some Questions Involving Prefix Codes". Thesis, 2018. https://etd.iisc.ac.in/handle/2005/4719.

Pełny tekst źródła
Streszczenie:
Let A be a finite alphabet and A be the set of all finite sequences of the elements of A. A word is any member of A . A prefix code X is a set of words satisfying the prefix property, i.e., no word in the set is a prefix of any other word in the set. If X is defined as the collection of all concatenations of the words of X, then it can be seen that each of its elements can be expressed as a concatenation of the words of X in a unique manner. Any subset of A possessing this property is called a uniquely decodable code and the prefix codes constitute an important subclass of uniquely decodable codes. In our work, we look into the following questions involving prefix codes: i) We first study a parameter associated with prefix codes. For a discrete source with source distribution P, the problem of constructing a prefix code over the alphabet A with the minimum expected length is one of the earliest problems addressed in information theory. Let LD(P) (D = jAj) denote the minimum expected length of a prefix code for this source. This LD(P) is the parameter of our interest and can be seen as a function—call it the minimum expected length function LD—over the set Pn of all probability mass functions (PMF) of the form (p1; p2; : : : ; pn). It is well known that LD attains its maximum value at the uniform distribution Un = (1=n; 1=n; : : : ; 1=n). However, a characterization of all the PMFs at which this function attains a maximum value has not been carried out before, which we do in this work. This characterization also suggests the following problem: do the restrictions of LD over certain subsets of Pn attain maximum values in their respective domains? If so, what are the PMFs at which these maximum values are attained? We give a partial solution to this problem for the binary case D = 2. ii) We introduce the problem of finding a minimum expected length binary prefix code (hereafter known as an optimal code) among the prefix codes that satisfy the following constraint: all the possible concatenations of the codewords must satisfy the (d; k) runlength-limited (RLL) constraint, i.e., the number of zeros between any two successive ones in them is at least d and the length of any run of consecutive zeros is at most k. For certain (d; k) pairs, we show that this problem can be reduced to a well-studied problem of finding a prefix code with the minimum expected cost when each letter of the alphabet has a non-negative cost associated with it. Also, for these (d; k) pairs, we examine if the optimal codes satisfy a certain maximality property defined with respect to the prefix condition and the RLL constraint. iii) We then study a property of prefix codes: of it being synchronous or not. A prefix code is said to be synchronous if there exists a word x 2 A such that for all w 2 A , we have wx 2 X . Capocelli et al. (1988) have given an algorithm to determine if a given prefix code is synchronous or not, which has subsequently been improved. In our work, we devise an algorithm based on the notion of dangling suffixes, similar to the classical Sardinas-Patterson test for determining whether or not a given code is uniquely decodable. We show that our algorithm has a much better worst-case performance when compared to that 2 of the improved version of the algorithm of Capocelli et al. In this process, we also slightly improve upon the known necessary and sufficient condition for a prefix code to be synchronous. iv) Finally we look into a class of prefix codes called the bifix codes. A bifix code is a prefix code in which no codeword is a suffix of another codeword. For a finite sequence of non-decreasing natural numbers L = (l1; l2; : : : ; ln), there is no known efficient algorithm to determine the existence of a bifix code whose sequence of codeword lengths is the same as L (henceforth referred to as a bifix code for L). For a finite sequence L taking only two distinct integer values (called a two-level sequence), we show that the problem of deciding the existence of a bifix code for L can be converted to a problem of finding a particular subset of vertices from certain graphs derived from de Bruijn graphs. We then conjecture an efficient way of finding these subsets. Ahlswede’s conjecture (1996) is another problem which has led to a lot of work in the field of bifix codes. It states that if a sequence L has a Kraft sum ( P i 2􀀀li ) less than or equal to 3=4, then there exists a binary bifix code for L. This conjecture has been proved when L is a two-level sequence. We give an alternate proof of this by pointing out a new general way of constructing a bifix code for a two-level sequence L with Kraft sum less than or equal to 3=4.
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Uniquely decodable code"

1

Ni, Jian. Connectivity, dynamic performance of random radio networks and state independent uniquely decodable codes: Codeword synchronisation of collaborative coding multiple access communications. [s.l.]: typescript, 1994.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Uniquely decodable code"

1

Belal, Ahmed A. "A More General Optimization Problem for Uniquely Decodable Codes". W Discrete Structural Optimization, 239–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-85095-0_24.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Uniquely decodable code"

1

Kulhandjian, Michel, i Dimitris A. Pados. "Uniquely decodable code-division via augmented Sylvester-Hadamard matrices". W 2012 IEEE Wireless Communications and Networking Conference (WCNC). IEEE, 2012. http://dx.doi.org/10.1109/wcnc.2012.6214390.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Austrin, Per, Petteri Kaski, Mikko Koivisto i Jesper Nederlof. "Sharper upper bounds for unbalanced Uniquely Decodable Code Pairs". W 2016 IEEE International Symposium on Information Theory (ISIT). IEEE, 2016. http://dx.doi.org/10.1109/isit.2016.7541316.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Liu, Chin-Fu, Hsiao-feng Francis Lu i Po-Ning Chen. "Analysis and practice of uniquely decodable one-to-one code". W 2013 IEEE International Symposium on Information Theory (ISIT). IEEE, 2013. http://dx.doi.org/10.1109/isit.2013.6620458.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Lu, Shan, Wei Hou, Jun Cheng i Hiroshi Kamabe. "A New Kind of Nonbinary Uniquely Decodable Codes with Arbitrary Code Length for Multiple-Access Adder Channel". W 2018 IEEE Information Theory Workshop (ITW). IEEE, 2018. http://dx.doi.org/10.1109/itw.2018.8613495.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Kulhandjian, Michel, Claude D'Amours i Hovannes Kulhandjian. "Uniquely Decodable Ternary Codes for Synchronous CDMA Systems". W 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). IEEE, 2018. http://dx.doi.org/10.1109/pimrc.2018.8580794.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Kulhandjian, Michel, Hovannes Kulhandjian i Claude D'Amours. "Uniquely Decodable Ternary Codes via Augmented Sylvester-Hadamard Matrices". W 2021 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom). IEEE, 2021. http://dx.doi.org/10.1109/blackseacom52164.2021.9527898.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Kulekci, M. Oguzhan. "Uniquely decodable and directly accessible non-prefix-free codes via wavelet trees". W 2013 IEEE International Symposium on Information Theory (ISIT). IEEE, 2013. http://dx.doi.org/10.1109/isit.2013.6620570.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Shaltiel, Ronen, i Jad Silbak. "Explicit uniquely decodable codes for space bounded channels that achieve list-decoding capacity". W STOC '21: 53rd Annual ACM SIGACT Symposium on Theory of Computing. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3406325.3451048.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Singh, A., i P. Singh. "Uniquely decodable codes for overloaded synchronous CDMA with two sets of orthogonal signatures". W 2014 Annual IEEE India Conference (INDICON). IEEE, 2014. http://dx.doi.org/10.1109/indicon.2014.7030549.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Lu, Shan, Wei Hou, Jun Cheng i Hiroshi Kamabe. "Recursive Construction of k-Ary Uniquely Decodable Codes for Multiple-Access Adder Channel". W 2018 International Symposium on Information Theory and Its Applications (ISITA). IEEE, 2018. http://dx.doi.org/10.23919/isita.2018.8664318.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii