Gotowa bibliografia na temat „Uncertain imputation”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Uncertain imputation”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Uncertain imputation"
G.V., Suresh, i Srinivasa Reddy E.V. "Uncertain Data Analysis with Regularized XGBoost". Webology 19, nr 1 (20.01.2022): 3722–40. http://dx.doi.org/10.14704/web/v19i1/web19245.
Pełny tekst źródłaWang, Jianwei, Ying Zhang, Kai Wang, Xuemin Lin i Wenjie Zhang. "Missing Data Imputation with Uncertainty-Driven Network". Proceedings of the ACM on Management of Data 2, nr 3 (29.05.2024): 1–25. http://dx.doi.org/10.1145/3654920.
Pełny tekst źródłaElimam, Rayane, Nicolas Sutton-Charani, Stéphane Perrey i Jacky Montmain. "Uncertain imputation for time-series forecasting: Application to COVID-19 daily mortality prediction". PLOS Digital Health 1, nr 10 (25.10.2022): e0000115. http://dx.doi.org/10.1371/journal.pdig.0000115.
Pełny tekst źródłaLiang, Pei, Junhua Hu, Yongmei Liu i Xiaohong Chen. "Public resources allocation using an uncertain cooperative game among vulnerable groups". Kybernetes 48, nr 8 (2.09.2019): 1606–25. http://dx.doi.org/10.1108/k-03-2018-0146.
Pełny tekst źródłaBleidorn, Michel Trarbach, Wanderson de Paula Pinto, Isamara Maria Schmidt, Antonio Sergio Ferreira Mendonça i José Antonio Tosta dos Reis. "Methodological approaches for imputing missing data into monthly flows series". Ambiente e Agua - An Interdisciplinary Journal of Applied Science 17, nr 2 (5.04.2022): 1–27. http://dx.doi.org/10.4136/ambi-agua.2795.
Pełny tekst źródłaGromova, Ekaterina, Anastasiya Malakhova i Arsen Palestini. "Payoff Distribution in a Multi-Company Extraction Game with Uncertain Duration". Mathematics 6, nr 9 (11.09.2018): 165. http://dx.doi.org/10.3390/math6090165.
Pełny tekst źródłaLee, Jung Yeon, Myeong-Kyu Kim i Wonkuk Kim. "Robust Linear Trend Test for Low-Coverage Next-Generation Sequence Data Controlling for Covariates". Mathematics 8, nr 2 (8.02.2020): 217. http://dx.doi.org/10.3390/math8020217.
Pełny tekst źródłaGriffin, James M., Jino Mathew, Antal Gasparics, Gábor Vértesy, Inge Uytdenhouwen, Rachid Chaouadi i Michael E. Fitzpatrick. "Machine-Learning Approach to Determine Surface Quality on a Reactor Pressure Vessel (RPV) Steel". Applied Sciences 12, nr 8 (7.04.2022): 3721. http://dx.doi.org/10.3390/app12083721.
Pełny tekst źródłaFLÅM, S. D., i Y. M. ERMOLIEV. "Investment, uncertainty, and production games". Environment and Development Economics 14, nr 1 (luty 2009): 51–66. http://dx.doi.org/10.1017/s1355770x08004579.
Pełny tekst źródłaLe, H., S. Batterman, K. Dombrowski, R. Wahl, J. Wirth, E. Wasilevich i M. Depa. "A Comparison of Multiple Imputation and Optimal Estimation for Missing and Uncertain Urban Air Toxics Data". Epidemiology 17, Suppl (listopad 2006): S242. http://dx.doi.org/10.1097/00001648-200611001-00624.
Pełny tekst źródłaRozprawy doktorskie na temat "Uncertain imputation"
Elimam, Rayane. "Apprentissage automatique pour la prédiction de performances : du sport à la santé". Electronic Thesis or Diss., IMT Mines Alès, 2024. https://theses.hal.science/tel-04805708.
Pełny tekst źródłaNumerous performance indicators exist in sport and health (recovery, rehabilitation, etc.), allowing us to characterize different sporting and therapeutic criteria.These different types of performance generally depend on the workload (or rehabilitation) undergone by athletes or patients.In recent years, many applications of machine learning to sport and health have been proposed.Predicting or even explaining performance based on workload data could help optimize training or therapy.In this context, the management of missing data and the articulation between load types and the various performance indicators considered represent the 2 issues addressed in this manuscript through 4 applications. The first 2 concern the management of missing data through uncertain modeling performed on (i) highly incomplete professional soccer data and (ii) artificially noisy COVID-19 data. For these 2 contributions, we have combined credibilistic uncertainty models, based on the theory of belief functions, with various imputation methods adapted to the chronological context of training/matches and therapies.Once the missing data had been imputed in the form of belief functions, the credibilistic $k$ nearest-neighbor model adapted to regression was used to take advantage of the uncertain uncertainty patterns associated with the missing data. In the context of predicting performance in handball matches as a function of past workloads, multi-output regression models are used to simultaneously predict 7 athletic and technical performance indicators. The final application concerns the rehabilitation of post-stroke patients who have partially lost the use of one arm. In order to detect patients not responding to therapy, the problem of predicting different rehabilitation criteria has enabled the various contributions of this manuscript (credibilistic imputation of missing data and multiscore regression for the simultaneous prediction of different performance indicators
Bodine, Andrew James. "The Effect of Item Parameter Uncertainty on Test Reliability". The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1343316705.
Pełny tekst źródłaHuang, Shiping. "Exploratory visualization of data with variable quality". Link to electronic thesis, 2005. http://www.wpi.edu/Pubs/ETD/Available/etd-01115-225546/.
Pełny tekst źródłaKsiążki na temat "Uncertain imputation"
Analysis of Integrated Data. Taylor & Francis Group, 2019.
Znajdź pełny tekst źródłaChambers, Raymond L., i Li-Chun Zhang. Analysis of Integrated Data. Taylor & Francis Group, 2019.
Znajdź pełny tekst źródłaChambers, Raymond L., i Lichun Zhang. Analysis of Integrated Data. Taylor & Francis Group, 2021.
Znajdź pełny tekst źródłaChambers, Raymond L., i Li-Chun Zhang. Analysis of Integrated Data. Taylor & Francis Group, 2019.
Znajdź pełny tekst źródłaCzęści książek na temat "Uncertain imputation"
Little, Roderick J. A., i Donald B. Rubin. "Estimation of Imputation Uncertainty". W Statistical Analysis with Missing Data, 75–93. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781119013563.ch5.
Pełny tekst źródłaRanvier, Thomas, Haytham Elghazel, Emmanuel Coquery i Khalid Benabdeslem. "Accounting for Imputation Uncertainty During Neural Network Training". W Big Data Analytics and Knowledge Discovery, 265–80. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-39831-5_24.
Pełny tekst źródłaShi, Xingjie, Can Yang i Jin Liu. "Using Collaborative Mixed Models to Account for Imputation Uncertainty in Transcriptome-Wide Association Studies". W Methods in Molecular Biology, 93–103. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-0947-7_7.
Pełny tekst źródłaErdogan Erten, Gamze, Camilla Zacche da Silva i Jeff Boisvert. "Decorrelation and Imputation Methods for Multivariate Modeling". W Applied Spatiotemporal Data Analytics and Machine Learning [Working Title]. IntechOpen, 2024. http://dx.doi.org/10.5772/intechopen.115069.
Pełny tekst źródłaLajeunesse, Marc J. "Recovering Missing or Partial Data from Studies: a Survey of Conversions and Imputations for Meta-analysis". W Handbook of Meta-analysis in Ecology and Evolution. Princeton University Press, 2013. http://dx.doi.org/10.23943/princeton/9780691137285.003.0013.
Pełny tekst źródłaStreszczenia konferencji na temat "Uncertain imputation"
Mai, Lihao, Haoran Li i Yang Weng. "Data Imputation with Uncertainty Using Stochastic Physics-Informed Learning". W 2024 IEEE Power & Energy Society General Meeting (PESGM), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/pesgm51994.2024.10688419.
Pełny tekst źródłaZhang, Shunyang, Senzhang Wang, Xianzhen Tan, Renzhi Wang, Ruochen Liu, Jian Zhang i Jianxin Wang. "SaSDim:Self-Adaptive Noise Scaling Diffusion Model for Spatial Time Series Imputation". W Thirty-Third International Joint Conference on Artificial Intelligence {IJCAI-24}. California: International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/ijcai.2024/283.
Pełny tekst źródłaAzarkhail, M., i P. Woytowitz. "Uncertainty management in model-based imputation for missing data". W 2013 Annual Reliability and Maintainability Symposium (RAMS). IEEE, 2013. http://dx.doi.org/10.1109/rams.2013.6517697.
Pełny tekst źródłaZhao, Qilong, Yifei Zhang, Mengdan Zhu, Siyi Gu, Yuyang Gao, Xiaofeng Yang i Liang Zhao. "DUE: Dynamic Uncertainty-Aware Explanation Supervision via 3D Imputation". W KDD '24: The 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 6335–43. New York, NY, USA: ACM, 2024. http://dx.doi.org/10.1145/3637528.3671641.
Pełny tekst źródłaJun, Eunji, Ahmad Wisnu Mulyadi i Heung-Il Suk. "Stochastic Imputation and Uncertainty-Aware Attention to EHR for Mortality Prediction". W 2019 International Joint Conference on Neural Networks (IJCNN). IEEE, 2019. http://dx.doi.org/10.1109/ijcnn.2019.8852132.
Pełny tekst źródłaSaeidi, Rahim, i Paavo Alku. "Accounting for uncertainty of i-vectors in speaker recognition using uncertainty propagation and modified imputation". W Interspeech 2015. ISCA: ISCA, 2015. http://dx.doi.org/10.21437/interspeech.2015-703.
Pełny tekst źródłaHwang, Sunghyun, i Dong-Kyu Chae. "An Uncertainty-Aware Imputation Framework for Alleviating the Sparsity Problem in Collaborative Filtering". W CIKM '22: The 31st ACM International Conference on Information and Knowledge Management. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3511808.3557236.
Pełny tekst źródłaAndrews, Mark, Gavin Jones, Brian Leyde, Lie Xiong, Max Xu i Peter Chien. "A Statistical Imputation Method for Handling Missing Values in Generalized Polynomial Chaos Expansions". W ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gt2019-91035.
Pełny tekst źródłaMoreira, Rafael Peralta, Thiago da Silva Piedade i Marcelo Victor Tomaz De Matos. "Credibility Assessment of Annular Casing Cement for P&A Campaigns: A Case Study in Campos Basin Offshore Brazil". W Offshore Technology Conference. OTC, 2023. http://dx.doi.org/10.4043/32625-ms.
Pełny tekst źródłaWang, Zepu, Dingyi Zhuang, Yankai Li, Jinhua Zhao, Peng Sun, Shenhao Wang i Yulin Hu. "ST-GIN: An Uncertainty Quantification Approach in Traffic Data Imputation with Spatio-Temporal Graph Attention and Bidirectional Recurrent United Neural Networks". W 2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2023. http://dx.doi.org/10.1109/itsc57777.2023.10422526.
Pełny tekst źródła