Gotowa bibliografia na temat „Ultrasonic machining process”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Ultrasonic machining process”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Ultrasonic machining process"
Xiao, Qiang. "Research on the Machining Principle and Experinment of Ultrasonic Machining". Applied Mechanics and Materials 373-375 (sierpień 2013): 1983–86. http://dx.doi.org/10.4028/www.scientific.net/amm.373-375.1983.
Pełny tekst źródłaYu, Jian Wu, Lucjan Dabrowski, Shao Hui Yin i Zbigniew Lechniak. "Productivity of EDM Process Assisted by Ultrasonic Waves". Solid State Phenomena 175 (czerwiec 2011): 157–60. http://dx.doi.org/10.4028/www.scientific.net/ssp.175.157.
Pełny tekst źródłaKimme, Simon, Nessma Hafez, Christian Titsch, Jonas Maximilian Werner, Andreas Nestler i Welf-Guntram Drossel. "Close-to-process strain measurement in ultrasonic vibration-assisted turning". Journal of Sensors and Sensor Systems 8, nr 2 (24.09.2019): 285–92. http://dx.doi.org/10.5194/jsss-8-285-2019.
Pełny tekst źródłaYe, Hong-xian, Xu-yi Yang, Xiao-ping Hu, Bao-hua Yu i Xi Kang. "Research on correlation model between transducer temperature and acoustic performance parameters of ultrasonic machining system". AIP Advances 12, nr 11 (1.11.2022): 115303. http://dx.doi.org/10.1063/5.0124897.
Pełny tekst źródłaWang, Z. Y., i K. P. Rajurkar. "Dynamic Analysis of the Ultrasonic Machining Process". Journal of Manufacturing Science and Engineering 118, nr 3 (1.08.1996): 376–81. http://dx.doi.org/10.1115/1.2831039.
Pełny tekst źródłaTeimouri, R., H. Baseri i Rasoul Moharami. "Multi-responses optimization of ultrasonic machining process". Journal of Intelligent Manufacturing 26, nr 4 (29.08.2013): 745–53. http://dx.doi.org/10.1007/s10845-013-0831-1.
Pełny tekst źródłaIsobe, Hiromi, Yusuke Uehara, Keisuke Hara, Takashi Onuma i Arata Mihara. "Experimental Verification of Machining Process of Ultrasonic Drilling". Key Engineering Materials 516 (czerwiec 2012): 275–80. http://dx.doi.org/10.4028/www.scientific.net/kem.516.275.
Pełny tekst źródłaZeng, Wei Min, Xi Peng Xu i Zhi Jian Pei. "Rotary Ultrasonic Machining of Advanced Ceramics". Materials Science Forum 532-533 (grudzień 2006): 361–64. http://dx.doi.org/10.4028/www.scientific.net/msf.532-533.361.
Pełny tekst źródłaWANG, Jingsi, Keita SHIMADA, Masayoshi MIZUTANI i Tsunemoto KURIYAGAWA. "B014 Influence of Process Parameters on Ultrasonic Machining using Smoothed Particle Hydrodynamics". Proceedings of International Conference on Leading Edge Manufacturing in 21st century : LEM21 2013.7 (2013): 214–19. http://dx.doi.org/10.1299/jsmelem.2013.7.214.
Pełny tekst źródłaPraneetpongrung, Chaiya, Yasushi Fukuzawa i Shigeru Nagasawa. "Effects of Combined Ultrasonic Vibration during the Sinking EDM Process for Cemented Carbide". Advanced Materials Research 76-78 (czerwiec 2009): 657–63. http://dx.doi.org/10.4028/www.scientific.net/amr.76-78.657.
Pełny tekst źródłaRozprawy doktorskie na temat "Ultrasonic machining process"
Chang, Hsueh Yu, i 張學宇. "Monitoring of Ultrasonic Machining Process by Time-Frequency Analysis". Thesis, 2016. http://ndltd.ncl.edu.tw/handle/54401803882195265563.
Pełny tekst źródła國立臺灣科技大學
機械工程系
104
Ultrasonic machining is one of the most common methods in brittle materials. The quality of workpiece is usually influenced by processing parameters, such as abrasive particle and tool amplitude. In the past, most of the literature focused on optimization of processing parameters to improve the surface quality and few people studied in the connection between signals and workpiece quality. Besides, there is no way to monitor the ultrasonic process. In general, we can’t understand the workpiece quality and calibrate the machine before the end of machining. This study will use the dynamometer to capture force signal during machining, and the Empirical Mode Decomposition is applied to analyze the vibration mode, including cavitation effect, impact and hammer effect. After capturing the characteristics of the vibration mode, such as Marginal Spectrum, power, and mean frequency, we establish a measurement mechanism which can distinguish the stability of machine and workpiece quality by force signal. This measure mechanism can be also applied to monitor the ultrasonic machining process. Furthermore, the tool and horn are self-designed. In order to enhance the design accuracy, we not only used modal analysis and harmonic response analysis in ANSYS but ensure the result is as same as the measurement when the horn is without loading.
Wang, Hsueh-Ming Steve. "Analysis of the effect of process parameters on material removal rate in ultrasonic machining /". Diss., 1998. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:9914251.
Pełny tekst źródłaAl-okaily, Ala'a M. "Adaptive cutting force control for process stability of micro ultrasonic machining". 2010. http://digitalcommons.unl.edu/imsediss/5.
Pełny tekst źródłaTitle from title screen (site viewed July 22, 2010). PDF text: xi, 79 p. : ill. (some col.) Publication: Industrial and Management Systems Engineering -- Dissertations and Student Research. Includes bibliographical references.
Cheng, Fu-Yao, i 鄭富堯. "Process Parameters Analysis for Ultrasonic Vibration Assisted Machining on Tempered Glass Material". Thesis, 2013. http://ndltd.ncl.edu.tw/handle/59199182782783599353.
Pełny tekst źródła國立聯合大學
機械工程學系碩士班
101
In recent years, smart phones become popular modern communication tools, taking into account the quality of the product and function, the manufacturer must be thinner mobile phone panels. For strength and life cycle of the demand, deeper glass reinforcing layer, increases the difficulty of processing technology. High speed CNC machine tools for processing tempered glass panel, with the testing standards improved, has been unable to achieve both quality and efficiency. This study investigates the optimal parameters of drilling process for tempered glass material by ultrasonic vibration assisted CNC machining. Using Taguchi methods, the optimal parameters for reducing burrs and machining time can be obtained based on drilling burrs less than 0.10 mm and machining time less than 50 second for initial machining. The control factors include: (A) the particle size of tool, (B) spiral feed rate, (C) tool angle of spiral operation, and (D) vibration amplitude. Three levels of each control factor establish the L9(34) orthogonal array. The influence and contribution of each contol factor are observed by the analysis of signal-to-noise ratios (S/N) and analysis of variance (ANOVA). The results demonstrate the optimal combination of process parameters is (A3B1C1D3). The control factors affect the processing quality in order are A, C, B and D.
Chu, Kung-To, i 朱恭德. "Grey relational analysis to optimize the ultrasonic machining process with multiple performance characteristics". Thesis, 2007. http://ndltd.ncl.edu.tw/handle/79398113264855313675.
Pełny tekst źródła逢甲大學
機械工程學所
95
Ceramics is regarded as the most hardness, and it also be regarded as the important material in the industry. The methods of ceramics artifact are Grinding, Polishing, Barrel, Finishing, Ultrasonic Machining and Cutting. Especially the Ultrasonic Machining is the chief quality to control the ceramics products. The way of Ultrasonic Machining is mixing Diamond Polishing and Ultrasonic join the Data Encryption for the accurate quality. Therefore, the way of ceramics artifact analysis is using ceramics Ultrasonic Machining. Feed rate, spine speed, cutting deeps, cutting width are experiment factorial of the report. Every experiment factorial has three levels at the same time. Also, it uses Taguchi Orthogonal Array for experiment, then gets result of Surface Toughness, Cutter Wears, and use Grey Relational Theory to analyze ceramics multiple performance characteristics to test and verify in the last period. Grey Relational Theory is mixing Grey Relational Analyze Theory and Taguchi Method. It can reduce the experiment times and cost. It’s the best collection to analyze the multiple performance characteristics.
Książki na temat "Ultrasonic machining process"
Fuling, Zhao, red. Mian xiang kuai su zhi zao de te zhong jia gong ji shu: Non-traditional machining technology oriented rapid manufacturing. Beijing Shi: Guo fang gong ye chu ban she, 2009.
Znajdź pełny tekst źródłaIntelligent Energy Field Manufacturing: Interdisciplinary Process Innovations. CRC, 2010.
Znajdź pełny tekst źródłaZhang, Wenwu. Intelligent Energy Field Manufacturing: Interdisciplinary Process Innovations. Taylor & Francis Group, 2018.
Znajdź pełny tekst źródłaZhang, Wenwu. Intelligent Energy Field Manufacturing: Interdisciplinary Process Innovations. Taylor & Francis Group, 2018.
Znajdź pełny tekst źródłaZhang, Wenwu. Intelligent Energy Field Manufacturing: Interdisciplinary Process Innovations. Taylor & Francis Group, 2018.
Znajdź pełny tekst źródłaZhang, Wenwu. Intelligent Energy Field Manufacturing: Interdisciplinary Process Innovations. Taylor & Francis Group, 2018.
Znajdź pełny tekst źródłaCzęści książek na temat "Ultrasonic machining process"
Cong, Weilong, i Zhijian Pei. "Process of Ultrasonic Machining". W Handbook of Manufacturing Engineering and Technology, 1629–50. London: Springer London, 2014. http://dx.doi.org/10.1007/978-1-4471-4670-4_76.
Pełny tekst źródłaSingh, Rupinder, i Sudhir Kumar. "Modified Ultrasonic Machining Process". W Non-Conventional Hybrid Machining Processes, 53–77. First edfition. | Boca Raton : CRC Press, 2020. |: CRC Press, 2020. http://dx.doi.org/10.1201/9780429029165-4.
Pełny tekst źródłaCong, Weilong, i Zhijian Pei. "Process of Ultrasonic Machining". W Handbook of Manufacturing Engineering and Technology, 1–19. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-4976-7_76-1.
Pełny tekst źródłaDas, S., B. Doloi i B. Bhattacharyya. "Recent Advancement on Ultrasonic Micro Machining (USMM) Process". W Materials Forming, Machining and Tribology, 61–91. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52009-4_2.
Pełny tekst źródłaBhowmik, Sumit, Jagadish i Kapil Gupta. "Modeling and Optimization of Ultrasonic Machining Process". W Modeling and Optimization of Advanced Manufacturing Processes, 45–57. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00036-3_4.
Pełny tekst źródłaDandge, Shruti, i Shankar Chakraborty. "Selection of Machining Parameters in Ultrasonic Machining Process Using CART Algorithm". W Advanced Engineering Optimization Through Intelligent Techniques, 599–607. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8196-6_52.
Pełny tekst źródłaBanerjee, B., S. Doloi, S. Das i D. Dhupal. "Parametric Optimization of MRR During Ultrasonic Machining Process". W Lecture Notes in Mechanical Engineering, 257–70. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-7150-1_21.
Pełny tekst źródłaSrivastava, Shubham, Pravendra Kumar i S. K. S. Yadav. "Development and Experimental Study of Ultrasonic Assisted Electrical Discharge Machining Process". W Lecture Notes on Multidisciplinary Industrial Engineering, 89–99. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9471-4_8.
Pełny tekst źródłaMirad, Mehdi Mehtab, Jiomani Talukdar i Bipul Das. "Analysis of Tool Defect in Ultrasonic Machining Process Through Numerical Modelling". W Lecture Notes in Mechanical Engineering, 449–58. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3266-3_35.
Pełny tekst źródłaSingh, Anand Mohan, Ranjan Majhi i Promod Kumar Patowari. "Machinability Study for Slot Cutting on Glass Using Ultrasonic Machining Process". W Lecture Notes in Mechanical Engineering, 771–78. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-7711-6_76.
Pełny tekst źródłaStreszczenia konferencji na temat "Ultrasonic machining process"
Wang, Hsueh-Ming S., Louis Plebani i G. Sathyanarayanan. "Ultrasonic Machining: 1907 to Present". W ASME 1997 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-1149.
Pełny tekst źródłaSingh, Jaspreet, Chandandeep Singh, Kanwaljit Singh, Rupesh Gupta i Rakesh Goyal. "Analysis of Various Machining Parameters for Computer Controlled Ultrasonic and Rotary Machining Process". W 2021 3rd International Conference on Advances in Computing, Communication Control and Networking (ICAC3N). IEEE, 2021. http://dx.doi.org/10.1109/icac3n53548.2021.9725743.
Pełny tekst źródłaLiu, Meng-Kun, Hsueh-Yu Chang i Han Kuo. "Monitoring of ultrasonic machining process by time-frequency analysis". W 2017 IEEE/SICE International Symposium on System Integration (SII). IEEE, 2017. http://dx.doi.org/10.1109/sii.2017.8279216.
Pełny tekst źródłaWang, Hui, Dongzhe Zhang, Yunze Li, Weilong Cong i Anthony R. Burks. "Delamination in Surface Machining of CFRP Composites Using Rotary Ultrasonic Machining With Horizontal Ultrasonic Vibration". W ASME 2020 15th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/msec2020-8246.
Pełny tekst źródłaYu, Z., X. Hu i K. P. Rajurkar. "Study of Micro Ultrasonic Machining of Silicon". W ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-79244.
Pełny tekst źródłaZeng, W. M., Z. C. Li, N. J. Churi, Z. J. Pei i C. Treadwell. "Experimental Investigation Into Rotary Ultrasonic Machining of Alumina". W ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-61700.
Pełny tekst źródłaWang, Hui, Fuda Ning, Yingbin Hu, Yuanchen Li, Xinlin Wang i Weilong Cong. "Edge Trimming of CFRP Composites Using Rotary Ultrasonic Machining: Effects of Ultrasonic Vibration". W ASME 2018 13th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/msec2018-6362.
Pełny tekst źródłaFernando, Palamandadige K. S. C., Zhijian Pei, Meng (Peter) Zhang i Xiaoxu Song. "Rotary Ultrasonic Drilling of CFRP: Effect of Process Parameters on Delamination". W ASME 2016 11th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/msec2016-8611.
Pełny tekst źródłaSonate, Abhishek, Dheeraj Vepuri i Sagil James. "Study of Micro Ultrasonic Machining of CFRP/Ti Stacks". W ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-72317.
Pełny tekst źródłaDai, Yutang, Bin Liu, Guanglin Yin, Tao Li i Joseph M. Karanja. "Research on ultrasonic vibration aided femtosecond laser machining process of transparent materials". W International Symposium on Photonics and Optics, redaktor Zhiping Zhou. SPIE, 2015. http://dx.doi.org/10.1117/12.2196950.
Pełny tekst źródła