Artykuły w czasopismach na temat „UDP-glucuronosyltransferase”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: UDP-glucuronosyltransferase.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „UDP-glucuronosyltransferase”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Matsui, M., i F. Nagai. "Genetic deficiency of androsterone UDP-glucuronosyltransferase activity in Wistar rats is due to the loss of enzyme protein". Biochemical Journal 234, nr 1 (15.02.1986): 139–44. http://dx.doi.org/10.1042/bj2340139.

Pełny tekst źródła
Streszczenie:
Hepatic microsomal UDP-glucuronosyltransferases towards androsterone and testosterone were purified by chromatofocusing and UDP-hexanolamine affinity chromatography in Wistar rats which had genetic deficiency of androsterone UDP-glucuronosyltransferase activity. In rats with the high-activity phenotype, androsterone (the 3-hydroxy androgen) UDP-glucuronosyltransferase was eluted at about pH 7.4 and had a subunit Mr of 52 000, whereas testosterone (the 17-hydroxy steroid) UDP-glucuronosyltransferase was eluted at about pH 8.4 and had a subunit Mr of 50 000. The transferase that conjugates both androsterone and testosterone was eluted at about pH 8.0, had subunit Mr values of 50 000 and 52 000, and appeared to be an aggregate or hybrid of androsterone and testosterone UDP-glucuronosyltransferases. In rats with the low-activity phenotype, androsterone UDP-glucuronosyltransferase was absent, whereas testosterone UDP-glucuronosyltransferase was eluted at around pH 8.5, with a subunit Mr of 50 000.
Style APA, Harvard, Vancouver, ISO itp.
2

Golovinsky, E., Z. Naydenova i K. Grancharov. "UDP-Glucuronosyltransferase inhibitors". European Journal of Drug Metabolism and Pharmacokinetics 23, nr 4 (grudzień 1998): 453–56. http://dx.doi.org/10.1007/bf03189994.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Jackson, M. R., L. R. McCarthy, D. Harding, S. Wilson, M. W. H. Coughtrie i B. Burchell. "Cloning of a human liver microsomal UDP-glucuronosyltransferase cDNA". Biochemical Journal 242, nr 2 (1.03.1987): 581–88. http://dx.doi.org/10.1042/bj2420581.

Pełny tekst źródła
Streszczenie:
A cDNA clone (HLUG 25) encoding the complete sequence of a human liver UDP-glucuronosyltransferase was isolated from a lambda gt11 human liver cDNA library. The library was screened by hybridization to a partial-length human UDP-glucuronosyltransferase cDNA (pHUDPGT1) identified from a human liver pEX cDNA expression library by using anti-UDP-glucuronosyltransferase antibodies. The authenticity of the cDNA clone was confirmed by hybrid-select translation and extensive sequence homology to rat liver UDP-glucuronosyltransferase cDNAs. The sequence of HLUG 25 cDNA was determined to be 2104 base-pairs long, including a poly(A) tail, and contains a long open reading frame. The possible site of translation initiation of this sequence is discussed with reference to a rat UDP-glucuronosyltransferase cDNA clone (RLUG 38).
Style APA, Harvard, Vancouver, ISO itp.
4

Falany, C. N., M. D. Green, E. Swain i T. R. Tephly. "Substrate specificity and characterization of rat liver p-nitrophenol, 3 α-hydroxysteroid and 17 β-hydroxysteroid UDP-glucuronosyltransferases". Biochemical Journal 238, nr 1 (15.08.1986): 65–73. http://dx.doi.org/10.1042/bj2380065.

Pełny tekst źródła
Streszczenie:
Purified preparations of rat liver 17-hydroxysteroid, 3-hydroxyandrogen and p-nitrophenol (3-methylcholanthrene-inducible) UDP-glucuronosyltransferases were further characterized as to their substrate specificities, phospholipid-dependency and physical properties. The two steroid UDP-glucuronosyltransferases were shown to exhibit strict stereospecificity with respect to the conjugation of steroids and bile acids. These enzymes have been renamed 17 beta-hydroxysteroid and 3 alpha-hydroxysteroid UDP-glucuronosyltransferase to reflect this specificity for important endogenous substrates. An endogenous substrate has not yet been identified for the p-nitrophenol (3-methylcholanthrene-inducible) UDP-glucuronosyltransferase. The steroid UDP-glucuronosyltransferase activities were dependent on phospholipid for maximal catalytic activity. Complete delipidation rendered the UDP-glucuronosyltransferases inactive, and enzymic activity was not restored when phospholipid was added to the reaction mixture. After partial delipidation, phosphatidylcholine was the most efficient phospholipid for restoration of enzymic activity. Partial delipidation also altered the kinetic parameters of the 3 alpha-hydroxysteroid UDP-glucuronosyltransferase. The three purified UDP-glucuronosyltransferases are separate and distinct proteins, with different amino acid compositions and peptide maps generated by limited proteolysis with Staphylococcus aureus V8 proteinase. Some similarity was observed between the amino acid composition and limited proteolytic maps of the steroid UDP-glucuronosyltransferases, suggesting they are more closely related to each other than to the p-nitrophenol UDP-glucuronosyltransferase.
Style APA, Harvard, Vancouver, ISO itp.
5

Radominska-Pandya, A., J. Little i P. Czernik. "Human UDP-Glucuronosyltransferase 2B7". Current Drug Metabolism 2, nr 3 (1.09.2001): 283–98. http://dx.doi.org/10.2174/1389200013338379.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Leaver, Michael J., Joy Wright, Paul Hodgson, Evridiki Boukouvala i Stephen G. George. "Piscine UDP-glucuronosyltransferase 1B". Aquatic Toxicology 84, nr 3 (październik 2007): 356–65. http://dx.doi.org/10.1016/j.aquatox.2007.06.015.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

BÁNHEGYI, Gábor, László BRAUN, Paola MARCOLONGO, Miklós CSALA, Rosella FULCERI, József MANDL i BENEDETTI BENEDETTI. "Evidence for an UDP-glucuronic acid/phenol glucuronide antiport in rat liver microsomal vesicles". Biochemical Journal 315, nr 1 (1.04.1996): 171–76. http://dx.doi.org/10.1042/bj3150171.

Pełny tekst źródła
Streszczenie:
The transport of glucuronides synthesized in the luminal compartment of the endoplasmic reticulum by UDP-glucuronosyltransferase isoenzymes was studied in rat liver microsomal vesicles. Microsomal vesicles were loaded with p-nitrophenol glucuronide (5 mM), phenolphthalein glucuronide or UDP-glucuronic acid, by a freeze–thawing method. It was shown that: (i) the loading procedure resulted in millimolar intravesicular concentrations of the different loading compounds; (ii) addition of UDP-glucuronic acid (5 mM) to the vesicles released both intravesicular glucuronides within 1 min; (iii) glucuronides stimulated the release of UDP-glucuronic acid from UDP-glucuronic acid-loaded microsomal vesicles; (iv) trans-stimulation of UDP-glucuronic acid entry by loading of microsomal vesicles with p-nitrophenol glucuronide, phenolphthalein glucuronide, UDP-glucuronic acid and UDP-N-acetylglucosamine almost completely abolished the latency of UDP-glucuronosyltransferase, although mannose 6-phosphatase latency remained unaltered; (v) the loading compounds by themselves did not stimulate UDP-glucuronosyltransferase activity. This study indicates that glucuronides synthesized in the lumen of endoplasmic reticulum can leave by an antiport, which concurrently transports UDP-glucuronic acid into the lumen of the endoplasmic reticulum.
Style APA, Harvard, Vancouver, ISO itp.
8

Little, J. M., R. Lester, F. Kuipers, R. Vonk, P. I. Mackenzie, R. R. Drake, L. Frame i A. Radominska-Pandya. "Variability of human hepatic UDP-glucuronosyltransferase activity." Acta Biochimica Polonica 46, nr 2 (30.06.1999): 351–63. http://dx.doi.org/10.18388/abp.1999_4168.

Pełny tekst źródła
Streszczenie:
The availability of a unique series of liver samples from human subjects, both control patients (9) and those with liver disease (6; biliary atresia (2), retransplant, chronic tyrosinemia type I, tyrosinemia, Wilson's disease) allowed us to characterize human hepatic UDP-glucuronosyltransferases using photoaffinity labeling, immunoblotting and enzymatic assays. There was wide inter-individual variation in photoincorporation of the photoaffinity analogs, [32P]5-azido-UDP-glucuronic acid and [32P]5-azido-UDP-glucose and enzymatic glucuronidation of substrates specific to the two subfamilies of UDP-glucuronosyltransferases. However, the largest differences were between subjects with liver disease. Glucuronidation activities toward one substrate from each of the UDP-glucuronosyltransferases subfamilies, 1A and 2B, for control and liver disease, respectively, were 1.7-4.5 vs 0.4-4.7 nmol/mg x min for hyodeoxycholic acid (2B substrate) and 9.2-27.9 vs 8.1-75 nmol/mg x min for pchloro-m-xylenol (1A substrate). Microsomes from a patient with chronic tyrosinemia (HL32) photoincorporated [32P]5-azido-UDP-glucuronic acid at a level 1.5 times higher than the other samples, was intensely photolabeled by [32P]5-azido-UDP-glucose and had significantly higher enzymatic activity toward p-chloro-m-xylenol. Immunoblot analysis using anti-UDP-glucuronosyltransferase antibodies demonstrated wide inter-individual variations in UDP-glucuronosyltransferase protein with increased UDP-glucuronosyltransferase protein in HL32 microsomes, corresponding to one of the bands photolabeled by both probes. Detailed investigation of substrate specificity, using substrates representative of both the 1A (bilirubin, 4-nitrophenol) and 2B (androsterone, testosterone) families was carried out with HL32, HL38 (age and sex matched control) and HL18 (older control). Strikingly increased (5-8-fold) glucuronidation activity was seen in comparison to HL18 only with the phenolic substrates. The results indicate that one or more phenol-specific UDP-glucuronosyltransferase 1A isoforms are expressed at above normal levels in this tyrosinemic subject.
Style APA, Harvard, Vancouver, ISO itp.
9

Mackenzie, P., P. Gregory, D. Gardner-Stephen, R. Lewinsky, B. Jorgensen, T. Nishiyama, Wen Xie i A. Radominska-Pandya. "Regulation of UDP Glucuronosyltransferase Genes". Current Drug Metabolism 4, nr 3 (1.06.2003): 249–57. http://dx.doi.org/10.2174/1389200033489442.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Debinski, H. S., C. S. Lee, A. P. Dhillon, P. Mackenzie, J. Rhode i P. V. Desmond. "UDP-Glucuronosyltransferase in gilbert’s syndrome". Pathology 28, nr 3 (1996): 238–41. http://dx.doi.org/10.1080/00313029600169064.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Gould, S. J., i J. Guo. "Cytosylglucuronic acid synthase (cytosine: UDP-glucuronosyltransferase) from Streptomyces griseochromogenes, the first prokaryotic UDP-glucuronosyltransferase." Journal of Bacteriology 176, nr 5 (1994): 1282–86. http://dx.doi.org/10.1128/jb.176.5.1282-1286.1994.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Roy Chowdhury, J., N. Roy Chowdhury, C. N. Falany, T. R. Tephly i I. M. Arias. "Isolation and characterization of multiple forms of rat liver UDP-glucuronate glucuronosyltransferase". Biochemical Journal 233, nr 3 (1.02.1986): 827–37. http://dx.doi.org/10.1042/bj2330827.

Pełny tekst źródła
Streszczenie:
UDP-glucuronosyltransferase (EC 2.4.1.17) activity was solubilized from male Wistar rat liver microsomal fraction in Emulgen 911, and six fractions with the transferase activity were separated by chromatofocusing on PBE 94 (pH 9.4 to 6.0). Fraction I was further separated into Isoforms Ia, Ib and Ic by affinity chromatography on UDP-hexanolamine-Sepharose 4B. UDP-glucuronosyltransferase in Fraction III was further purified by rechromatofocusing (pH 8.7 to 7.5). UDP-glucuronosyltransferases in Fractions IV and V were purified by UDP-hexanolamine-Sepharose chromatography. The transferase isoforms in Fractions II, III, IV and V were finally purified by h.p.l.c. on a TSK G 3000 SW column. Purified UDP-glucuronosyltransferase Isoforms Ia (Mr 51,000), Ib (Mr 52,000), Ic (Mr 56,000), II (Mr 52,000), IV (Mr 53,000) and V (Mr 53,000) revealed single Coomassie Blue-stained bands on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. Isoform III enzyme showed two bands of Mr 52,000 and 53,000. Comparison of the amino acid compositions by the method of Cornish-Bowden [(1980) Anal. Biochem. 105, 233-238] suggested that all UDP-glucuronosyltransferase isoforms are structurally related. Reverse-phase h.p.l.c. of tryptic peptides of individual isoforms revealed distinct ‘maps’, indicating differences in primary protein structure. The two bands of Isoform III revealed distinct electrophoretic peptide maps after limited enzymic proteolysis. After reconstitution with phosphatidylcholine liposomes, the purified isoforms exhibited distinct but overlapping substrate specificities. Isoform V was specific for bilirubin glucuronidation, which was not inhibited by other aglycone substrates. Each isoform, except Ia, was identified as a glycoprotein by periodic acid/Schiff staining.
Style APA, Harvard, Vancouver, ISO itp.
13

Haque, Md Azizul, Laila Shamima Sharmin, Mohd Harun or Rashid, MA Alim, ARM Saifuddin Ekram i Syed Ghulam Mogni Mowla. "Crigler-Najjar Syndrome Type 2 in a Young Adult". Journal of Medicine 12, nr 1 (21.01.2011): 86–88. http://dx.doi.org/10.3329/jom.v12i1.6359.

Pełny tekst źródła
Streszczenie:
Crigler-Najjar syndrome type 2 in an autosomal recessive congenital non-hemolytic hyperbilirubinemia caused by UDP-glucuronosyltransferase deficiency. Only a few hundred cases have been described in the literature so far. We are reporting Crigler-Najjar syndrome type 2 in an 18 year old female born out of consanguineous marriage. Keyword: Crigler-Najjar syndrome; UDP-glucuronosyltransferase; Bangladesh DOI: 10.3329/jom.v12i1.6359J Medicine 2011; 12 : 81-85
Style APA, Harvard, Vancouver, ISO itp.
14

Pozzi, Enrique J. Sánchez, Viviana A. Catania, Marcelo G. Luquita, Marcelo G. Roma, Emilio A. Rodríguez Garay i Aldo D. Mottino. "Effect of oral administration of ursodeoxycholic acid on rat hepatic and intestinal UDP-glucuronosyltransferase". Canadian Journal of Physiology and Pharmacology 72, nr 11 (1.11.1994): 1265–71. http://dx.doi.org/10.1139/y94-181.

Pełny tekst źródła
Streszczenie:
The effect of oral administration of the bile acid ursodeoxycholic acid on rat hepatic and intestinal microsomal UDP-glucuronosyltransferase was studied. The bile acid was administered during 8 days at a daily dose of 500 mg/kg body weight. Enzyme activity was assessed in native and activated microsomes, using bilirubin and p-nitrophenol as substrates. Activation was achieved either by including UDP-N-acetylglucosamine in the incubation mixture or by preincubating native microsomes with an optimal concentration of Lubrol Px. Irrespective of activation status of the microsomes, ursodeoxycholic acid treatment increased enzyme activities toward both substrates in intestine, but not in liver. The analysis of the degree of activation by Lubrol Px revealed that, at least for bilirubin, ursodeoxycholic acid decreased the latency of the intestinal enzyme. The analysis of the lipid composition of microsomes showed several changes in response to ursodeoxycholic acid in intestine but not in liver. Thus, a decrease in cholesterol/phospholipid ratio and an increase in the unsaturation index of total-lipid fatty acids, which correlated well with a membrane "fluidification," were observed. These modifications appear to be related to the lower latency of bilirubin UDP-glucuronosyltransferase in intestine from treated rats and could be responsible, at least in part, for the improvement of enzyme activity in this group. Whatever the mechanism involved, the increment of intestinal UDP-glucuronosyltransferase activities toward both substrates may be relevant as a complement to the hepatic enzymes in those liver diseases in which ursodeoxycholic acid is used as a therapeutic agent.Key words: bilirubin, p-nitrophenol, ursodeoxycholic acid, UDP-glucuronosyltransferase, microsomal lipids.
Style APA, Harvard, Vancouver, ISO itp.
15

Green, M. D., C. N. Falany, R. B. Kirkpatrick i T. R. Tephly. "Strain differences in purified rat hepatic 3 α-hydroxysteroid UDP-glucuronosyltransferase". Biochemical Journal 230, nr 2 (1.09.1985): 403–9. http://dx.doi.org/10.1042/bj2300403.

Pełny tekst źródła
Streszczenie:
Qualitative and quantitative differences of purified hepatic 3 α-hydroxysteroid UDP-glucuronosyltransferase were investigated in Wistar and Sprague-Dawley rats. Individual differences in the glucuronidation rate of androsterone and chenodeoxycholic acid were observed in hepatic microsomal fractions from Wistar but not Sprague-Dawley rats. No individual variation was observed in the glucuronidation of testosterone, p-nitrophenol or oestrone. The 3 α-hydroxysteroid UDP-glucuronosyltransferases from livers of Wistar and Sprague-Dawley rats were isolated and highly purified by using Chromatofocusing and affinity chromatography. The amount of 3 α-hydroxysteroid UDP-glucuronosyltransferase in the liver of Wistar rats exhibiting low rates for androsterone glucuronidation is about 10% or less than that found in hepatic microsomal fractions obtained from Wistar rats having high rates for androsterone glucuronidation. The apparent Km for androsterone with purified 3 α-hydroxysteroid UDP-glucuronosyltransferase from Wistar rats with high glucuronidation activity (6 microM) was not different from that observed for the enzyme purified from Sprague-Dawley animals, whereas that for the enzyme purified from Wistar rats with low glucuronidation activity was substantially higher (120 microM). Despite the differences in apparent Km values for androsterone, the apparent Km for UDP-glucuronic acid (0.3 mM) was not different in the different populations of rats.
Style APA, Harvard, Vancouver, ISO itp.
16

Lee, C. S., H. S. Debinski, S. Smid, P. McKenzie, J. Rode i A. P. Dhillon. "Decreased UDP glucuronosyltransferase in Gilbert's syndrome". Pathology 25 (1993): 13. http://dx.doi.org/10.1016/s0031-3025(16)35753-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Coffman, Birgit L., Gladys R. Rios i Thomas R. Tephly. "Measurements of UDP- Glucuronosyltransferase (UGT) Activities". Current Protocols in Toxicology 00, nr 1 (maj 1999): 4.3.1–4.3.15. http://dx.doi.org/10.1002/0471140856.tx0403s13.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Burchell, Brian. "Genetic Variation of Human UDP-Glucuronosyltransferase". American Journal of PharmacoGenomics 3, nr 1 (2003): 37–52. http://dx.doi.org/10.2165/00129785-200303010-00006.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Guillemette, C. "Pharmacogenomics of human UDP-glucuronosyltransferase enzymes". Pharmacogenomics Journal 3, nr 3 (styczeń 2003): 136–58. http://dx.doi.org/10.1038/sj.tpj.6500171.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Mackenzie, Peter I. "The regulation of UDP glucuronosyltransferase expression". Drug Metabolism and Pharmacokinetics 32, nr 1 (styczeń 2017): S21. http://dx.doi.org/10.1016/j.dmpk.2016.10.094.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Wang, Laurene H., David Zakim, Abraham M. Rudolph i Leslie Z. Benet. "Developmental alterations in hepatic UDP-glucuronosyltransferase". Biochemical Pharmacology 35, nr 18 (wrzesień 1986): 3065–70. http://dx.doi.org/10.1016/0006-2952(86)90387-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Bossuyt, X., i N. Blanckaert. "Mechanism of stimulation of microsomal UDP-glucuronosyltransferase by UDP-N-acetylglucosamine". Biochemical Journal 305, nr 1 (1.01.1995): 321–28. http://dx.doi.org/10.1042/bj3050321.

Pełny tekst źródła
Streszczenie:
We propose the existence in rat liver endoplasmic reticulum (ER) of two asymmetric carrier systems. One system couples UDP-N-acetylglucosamine (UDPGlcNAc) transport to UDP-glucuronic acid (UDPGlcA) transport. When UDPGlcNAc was presented at the cytosolic side of the ER, it then acted as a weak inhibitor of UDPGlcA uptake. By contrast, UDPGlcNAc produced a forceful trans-stimulation of microsomal UDPGlcA uptake when it was present within the lumen of the ER. Likewise, cytosolic UDPGlcA strongly trans-stimulated efflux of intravesicular UDPGlcNAc, whereas cytosolic UDPGlcNAc was ineffective in trans-stimulating efflux of UDPGlcA. A second asymmetric carrier system couples UDPGlcNAc transport to UMP transport. Microsomal UDPGlcNAc influx was markedly stimulated by UMP present inside the microsomes. Such stimulation was only apparent when microsomes had been preincubated and thereby preloaded with UMP, indicating that UMP exerted its effect on UDPGlcNAc uptake by trans-stimulation from the lumenal side of the ER membrane. Contrariwise, extravesicular UMP only minimally trans-stimulated efflux of intramicrosomal UDPGlcNAc. It is widely accepted that UDPGlcNAc acts as a physiological activator of hepatic glucuronidation, but the mechanism of this effect has remained elusive. Based on our findings, we propose a model in which the interaction of two asymmetric transport pathways, i.e. UDPGlcA influx coupled to UDPGlcNAc efflux and UDPGlcNAc influx coupled to UMP efflux, combined with intravesicular metabolism of UDPGlcA, forms a mechanism that leads to stimulation of glucuronidation by UDPGlcNAc.
Style APA, Harvard, Vancouver, ISO itp.
23

Hu, Dong Gui, Robyn Meech, Ross A. McKinnon i Peter I. Mackenzie. "Transcriptional regulation of human UDP-glucuronosyltransferase genes". Drug Metabolism Reviews 46, nr 4 (22.10.2014): 421–58. http://dx.doi.org/10.3109/03602532.2014.973037.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Maruo, Yoshihiro, Masaru Iwai, Asami Mori, Hiroshi Sato i Yoshihiro Takeuchi. "Polymorphism of UDP-Glucuronosyltransferase and Drug Metabolism". Current Drug Metabolism 6, nr 2 (1.04.2005): 91–99. http://dx.doi.org/10.2174/1389200053586064.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Grancharov, K. "Natural and synthetic inhibitors of UDP-glucuronosyltransferase". Pharmacology & Therapeutics 89, nr 2 (luty 2001): 171–86. http://dx.doi.org/10.1016/s0163-7258(00)00109-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Toide, Kenji, Shin-ichiro Umeda, Hiroshi Yamazaki, Yoshiki Takahashi, Yoshiaki Terauchi, Toshihiko Fujii i Tetsuya Kamataki. "A Major Genotype in UDP-glucuronosyltransferase 2B15". Drug Metabolism and Pharmacokinetics 17, nr 2 (2002): 164–66. http://dx.doi.org/10.2133/dmpk.17.164.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Augustin, Christa, Lutz von Meyerinck i Achim Schmoldt. "Monoclonal antibodies against 4-hydroxybiphenyl-UDP-glucuronosyltransferase". Biochemical Pharmacology 44, nr 4 (sierpień 1992): 836–38. http://dx.doi.org/10.1016/0006-2952(92)90426-j.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

DEBINSKI, HENRY S., PETER I. MACKENZIE, C. SOON LEE, M. LAURENCE MASHFORD, JANINE A. DANKS, THOMAS R. TEPHLY, MITCHELL GREEN i PAUL V. DESMOND. "UDP glucuronosyltransferase in the cirrhotic rat liver". Journal of Gastroenterology and Hepatology 11, nr 4 (kwiecień 1996): 373–79. http://dx.doi.org/10.1111/j.1440-1746.1996.tb01386.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Zakim, D., M. Cantor i H. Eibl. "Phospholipids and UDP-glucuronosyltransferase. Structure/function relationships." Journal of Biological Chemistry 263, nr 11 (kwiecień 1988): 5164–69. http://dx.doi.org/10.1016/s0021-9258(18)60694-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Operaña, Theresa N., i Robert H. Tukey. "Oligomerization of the UDP-glucuronosyltransferase 1A Proteins". Journal of Biological Chemistry 282, nr 7 (19.12.2006): 4821–29. http://dx.doi.org/10.1074/jbc.m609417200.

Pełny tekst źródła
Streszczenie:
UDP-glucuronosyltransferases (UGTs) are membrane-bound proteins localized to the endoplasmic reticulum and catalyze the formation of β-d-glucopyranosiduronic acids (glucuronides) using UDP-glucuronic acid and acceptor substrates such as drugs, steroids, bile acids, xenobiotics, and dietary nutrients. Recent biochemical evidence indicates that the UGT proteins may oligomerize in the membrane, but conclusive evidence is still lacking. In the present study, we have used fluorescence resonance energy transfer (FRET) to study UGT1A oligomerization in live cells. This technique demonstrated that UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A7, UGT1A8, UGT1A9, and UGT1A10 self-oligomerize (homodimerize). Heterodimer interactions were also explored, and it was determined that UGT1A1 was capable of binding with UGT1A3, UGT1A4, UGT1A6, UGT1A7, UGT1A8, UGT1A9, and UGT1A10. In addition to the in vivo FRET analysis, UGT1A protein-protein interactions were demonstrated through co-immunoprecipitation experiments. Co-expression of hemagglutinin-tagged and cyan fluorescent protein-tagged UGT1A proteins, followed by immunoprecipitation with anti-hemagglutinin beads, illustrated the potential of each UGT1A protein to homodimerize. Co-immunoprecipitation results also confirmed that UGT1A1 was capable of forming heterodimer complexes with all of the UGT1A proteins, corroborating the FRET results in live cells. These preliminary studies suggest that the UGT1A family of proteins form oligomerized complexes in the membrane, a property that may influence function and substrate selectivity.
Style APA, Harvard, Vancouver, ISO itp.
31

Pretheeban, Manoja, Geoff Hammond, Stelvio Bandiera, Wayne Riggs i Dan Rurak. "Ontogenesis of UDP-glucuronosyltransferase enzymes in sheep". Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 159, nr 2 (czerwiec 2011): 159–66. http://dx.doi.org/10.1016/j.cbpa.2011.02.014.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Boutin, Jean A., Jacques Thomassin, Gerard Siest i Alain Cartier. "Heterogeneity of hepatic microsomal UDP-glucuronosyltransferase activities". Biochemical Pharmacology 34, nr 13 (lipiec 1985): 2235–49. http://dx.doi.org/10.1016/0006-2952(85)90777-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Lizák, Beáta, Ibolya Czegle, Miklós Csala, Angelo Benedetti, József Mandl i Gábor Bánhegyi. "Translocon pores in the endoplasmic reticulum are permeable to small anions". American Journal of Physiology-Cell Physiology 291, nr 3 (wrzesień 2006): 511–17. http://dx.doi.org/10.1152/ajpcell.00274.2005.

Pełny tekst źródła
Streszczenie:
Contribution of translocon peptide channels to the permeation of low molecular mass anions was investigated in rat liver microsomes. Puromycin, which purges translocon pores of nascent polypeptides, creating additional empty pores, raised the microsomal uptake of radiolabeled UDP-glucuronic acid, while it did not increase the uptake of glucose-6-phosphate or glutathione. The role of translocon pores in the transport of small anions was also investigated by measuring the effect of puromycin on the activity of microsomal enzymes with intraluminal active sites. The mannose-6-phosphatase activity of glucose-6-phosphatase and the activity of UDP-glucuronosyltransferase were elevated upon addition of puromycin, but glucose-6-phosphatase and β-glucuronidase activities were not changed. The increase in enzyme activities was due to a better access of the substrates to the luminal compartment rather than to activation of the enzymes. Antibody against Sec61 translocon component decreased the activity of UDP-glucuronosyltransferase and antagonized the effect of puromycin. Similarly, the addition of the puromycin antagonist anisomycin or treatments of microsomes, resulting in the release of attached ribosomes, prevented the puromycin-dependent increase in the activity. Mannose-6-phosphatase and UDP-glucuronosyltransferase activities of smooth microsomal vesicles showed higher basal latencies that were not affected by puromycin. In conclusion, translationally inactive, ribosome-bound translocons allow small anions to cross the endoplasmic reticulum membrane. This pathway can contribute to the nonspecific substrate supply of enzymes with intraluminal active centers.
Style APA, Harvard, Vancouver, ISO itp.
34

Muñoz, Maria E., Alejandro Esteller i Javier González. "Substrate induction of bilirubin conjugation and biliary excretion in the rat". Clinical Science 73, nr 4 (1.10.1987): 371–75. http://dx.doi.org/10.1042/cs0730371.

Pełny tekst źródła
Streszczenie:
1. The effect of high bilirubin loads (60 μmol/kg twice daily for 2 days) on glucuronosyltransferase activity and biliary excretion of bilirubin was studied in Wistar rats. 2. The concentration of bilirubin in serum increased from 1.1 μmol/l in controls to 5.5 μmol/l after bilirubin pretreatment. 3. Bilirubin pretreatment led to a 25% increase in hepatic UDP-glucuronosyltransferase activity. Bilirubin Tm, was increased by 22% and correlated positively with glucuronosyltransferase activity. 4. The output of conjugated bilirubin in bile was enhanced but no changes in the proportion of monoconjugates to diconjugates were observed. 5. Our data suggest that prolonged treatment with bilirubin can increase biliary bilirubin excretion by inducing glucuronosyltransferase activity.
Style APA, Harvard, Vancouver, ISO itp.
35

Volkov, A. N. "Population genetic research of the mutation in ugt1a1 gene associated with reduced activity of liver UDP-glucuronosyltransferase A1". Fundamental and Clinical Medicine 5, nr 3 (30.09.2020): 59–65. http://dx.doi.org/10.23946/2500-0764-2020-5-3-59-65.

Pełny tekst źródła
Streszczenie:
Aim. To explore allele and genotype frequencies of the rs8175347 polymorphism within the UGT1A1 gene in Kemerovo Region. Materials and Methods. The study sample included 64 male and 68 female inhabitants of the Kemerovo Region. Upon DNA isolation from the peripheral blood leukocytes, we conducted allele-specific polymerase chain reaction followed by electrophoretic detection of the genotype. Results. The frequency of minor allele *28 of rs8175347 polymorphism, which is associated with the downregulation of UDP-glucuronosyltransferase А1 in the liver, was 33.3%, while the frequency of *28/*28 genotype was 13.6% and did not significantly differ in the examined men and women. Conclusion. High frequency of the *28/*28 genotype in the studied sample suggests a high prevalence of reduced UDP-glucuronosyltransferase А1 activity and associated conditions including Gilbert’s syndrome and adverse drug reactions.
Style APA, Harvard, Vancouver, ISO itp.
36

Noort, D., N. C. R. van Straten, G. J. P. H. Boons, G. A. van der Marel, X. Bossuyt, N. Blanckaert, G. J. Mulder i J. H. van Boom. "Synthesis of a potential inhibitor of UDP-glucuronosyltransferase". Bioorganic & Medicinal Chemistry Letters 2, nr 6 (czerwiec 1992): 583–88. http://dx.doi.org/10.1016/s0960-894x(01)81202-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Ishii, Yuji, Arief Nurrochmad i Hideyuki Yamada. "Modulation of UDP-Glucuronosyltransferase Activity by Endogenous Compounds". Drug Metabolism and Pharmacokinetics 25, nr 2 (2010): 134–48. http://dx.doi.org/10.2133/dmpk.25.134.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

De Sandro, Virginie, Rachel Catinot, William Kriszt, André Cordier i Lysiane Richert. "Male rat hepatic udp-glucuronosyltransferase activity toward thyroxine". Biochemical Pharmacology 43, nr 7 (kwiecień 1992): 1563–69. http://dx.doi.org/10.1016/0006-2952(92)90215-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Strassburg, Christian P., Nghia Nguyen, Michael P. Manns i Robert H. Tukey. "UDP-glucuronosyltransferase activity in human liver and colon". Gastroenterology 116, nr 1 (styczeń 1999): 149–60. http://dx.doi.org/10.1016/s0016-5085(99)70239-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Yokota, Hiroshi, Futoshi Ando, Hidetomo Iwano i Akira Yuasa. "Inhibitory effects of uridine diphosphate on udp-glucuronosyltransferase". Life Sciences 63, nr 19 (październik 1998): 1693–99. http://dx.doi.org/10.1016/s0024-3205(98)00441-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Mackenzie, Peter, Joanna M. Little i Anna Radominska-Pandya. "Glucosidation of hyodeoxycholic acid by UDP-glucuronosyltransferase 2B7". Biochemical Pharmacology 65, nr 3 (luty 2003): 417–21. http://dx.doi.org/10.1016/s0006-2952(02)01522-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Basu, N. K., M. Kovarova, A. Garza, S. Kubota, T. Saha, P. S. Mitra, R. Banerjee, J. Rivera i I. S. Owens. "Phosphorylation of a UDP-glucuronosyltransferase regulates substrate specificity". Proceedings of the National Academy of Sciences 102, nr 18 (21.04.2005): 6285–90. http://dx.doi.org/10.1073/pnas.0407872102.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

VARGAS, M., i M. R. FRANKLIN*. "Intestinal UDP-glucuronosyltransferase activities in rat and rabbit". Xenobiotica 27, nr 5 (styczeń 1997): 413–21. http://dx.doi.org/10.1080/004982597240406.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Loureiro, Ana I., Carlos Fernandes-Lopes, Maria J. Bonifácio, Lyndon C. Wright i Patricio Soares-da-Silva. "Hepatic UDP-Glucuronosyltransferase Is Responsible for Eslicarbazepine Glucuronidation". Drug Metabolism and Disposition 39, nr 9 (14.06.2011): 1486–94. http://dx.doi.org/10.1124/dmd.111.038620.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Soars, M. G., D. J. Smith, R. J. Riley i B. Burchell. "Cloning and Characterization of a Canine UDP-Glucuronosyltransferase". Archives of Biochemistry and Biophysics 391, nr 2 (lipiec 2001): 218–24. http://dx.doi.org/10.1006/abbi.2001.2383.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Mojarrabi, Behnaz, i Peter I. Mackenzie. "The Human UDP Glucuronosyltransferase, UGT1A10, Glucuronidates Mycophenolic Acid". Biochemical and Biophysical Research Communications 238, nr 3 (wrzesień 1997): 775–78. http://dx.doi.org/10.1006/bbrc.1997.7388.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

YANG, EUN K., KHOSROW KASHFI, JAYANTA ROY CHOWDHURY, NAMITA ROY CHOWDHURY i ANDREW J. DANNENBERG. "Phenolic Antioxidants Induce UDP-glucuronosyltransferase in Rat Livera". Annals of the New York Academy of Sciences 768, nr 1 (wrzesień 1995): 231–36. http://dx.doi.org/10.1111/j.1749-6632.1995.tb12128.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Fladvad, Torill, Pål Klepstad, Mette Langaas, Ola Dale, Stein Kaasa, Augusto Caraceni i Frank Skorpen. "Variability in UDP-glucuronosyltransferase genes and morphine metabolism". Pharmacogenetics and Genomics 23, nr 3 (marzec 2013): 117–26. http://dx.doi.org/10.1097/fpc.0b013e32835ce485.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Congiu, Mario, Maurice L. Mashford, John L. Slavin i Paul V. Desmond. "UDP Glucuronosyltransferase mRNA Levels in Human Liver Disease". Drug Metabolism and Disposition 30, nr 2 (1.02.2002): 129–34. http://dx.doi.org/10.1124/dmd.30.2.129.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

MARUO, Yoshihiro, i Hiroshi SATO. "Proteins in Response to Environmental Stress. UDP-glucuronosyltransferase." Nippon Eiseigaku Zasshi (Japanese Journal of Hygiene) 56, nr 4 (2002): 629–33. http://dx.doi.org/10.1265/jjh.56.629.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii