Rozprawy doktorskie na temat „UAV collision avoidance”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 28 najlepszych rozpraw doktorskich naukowych na temat „UAV collision avoidance”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj rozprawy doktorskie z różnych dziedzin i twórz odpowiednie bibliografie.
Patel, Amir. "UAV collision avoidance: a specific acceleration matching approach". Master's thesis, University of Cape Town, 2011. http://hdl.handle.net/11427/11582.
Pełny tekst źródłaIncludes bibliographical references.
An increased level of autonomy is required for future Unmanned Aerial Vehicle (UAV) missions. One of the technologies required for this to occur is an adequate sense and avoid system to enable the UAV to detect threat aircraft and take evasive action if required. This thesis investigates a collision avoidance system to satisfy a significant portion of the requirements for sense and avoid. It was hypothesised that a recently published method of UAV guidance, Specific Acceleration Matching (SAM) Control, could address the shortcomings of the current implementations. Additionally, a novel algorithm, the Linear 3D Velocity Guidance Control Algorithm (3DVGC) was developed to address the particular requirements of UAV collision avoidance.
Lee, Hua. "High-Precision Geolocation Algorithms for UAV and UUV Applications in Navigation and Collision Avoidance". International Foundation for Telemetering, 2008. http://hdl.handle.net/10150/606155.
Pełny tekst źródłaUUV homing and docking and UAV collision avoidance are two seemingly separate research topics for different applications. Upon close examination, these two are a pair of dual problems, with interesting correspondences and commonality. In this paper, we present the theoretical analysis, signal processing, and the field experiments of these two algorithms in UAV and UUV applications in homing and docking as well as collision avoidance.
Brandt, Adam M. "Haptic Collision Avoidance for a Remotely Operated Quadrotor UAV in Indoor Environments". Diss., CLICK HERE for online access, 2009. http://contentdm.lib.byu.edu/ETD/image/etd3177.pdf.
Pełny tekst źródłaJaroń, Piotr, i Mateusz Kucharczyk. "Vision System Prototype for UAV Positioning and Sparse Obstacle Detection". Thesis, Blekinge Tekniska Högskola, Sektionen för ingenjörsvetenskap, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-4663.
Pełny tekst źródłaVision systems are employed more and more often in navigation of ground and air robots. Their greatest advantages are: low cost compared to other sensors, ability to capture large portion of the environment very quickly on one image frame, and their light weight, which is a great advantage for air drone navigation systems. In the thesis the problem of UAV (Unmanned Aerial Vehicle) is considered. Two different issues are tackled. First is determining the vehicles position using one down-facing or two front-facing cameras, and the other is sparse obstacle detection. Additionally, in the thesis, the camera calibration process and camera set up for navigation is discussed. Error causes and types are analyzed.
Klaus, Robert Andrew. "Development of a Sense and Avoid System for Small Unmanned Aircraft Systems". BYU ScholarsArchive, 2013. https://scholarsarchive.byu.edu/etd/3761.
Pełny tekst źródłaDegen, Shane C. "Reactive image-based collision avoidance system for unmanned aircraft systems". Thesis, Queensland University of Technology, 2011. https://eprints.qut.edu.au/46969/1/Shane_Degen_Thesis.pdf.
Pełny tekst źródłaCosentino, Andrea. "Obstacle detection & collision avoidance system for an Unmanned Aerial Vehicle with real time trajectory generation". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019.
Znajdź pełny tekst źródłaLindsten, Fredrik. "Angle-only based collision risk assessment for unmanned aerial vehicles". Thesis, Linköping University, Department of Electrical Engineering, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-15757.
Pełny tekst źródłaThis thesis investigates the crucial problem of collision avoidance for autonomous vehicles. An anti-collision system for an unmanned aerial vehicle (UAV) is studied in particular. The purpose of this system is to make sure that the own vehicle avoids collision with other aircraft in mid-air. The sensor used to track any possible threat is for a UAV limited basically to a digital video camera. This sensor can only measure the direction to an intruding vehicle, not the range, and is therefore denoted an angle-only sensor. To estimate the position and velocity of the intruder a tracking system, based on an extended Kalman filter, is used. State estimates supplied by this system are very uncertain due to the difficulties of angle-only tracking. Probabilistic methods are therefore required for risk calculation. The risk assessment module is one of the essential parts of the collision avoidance system and has the purpose of continuously evaluating the risk for collision. To do this in a probabilistic way, it is necessary to assume a probability distribution for the tracking system output. A common approach is to assume normality, more out of habit than on actual grounds. This thesis investigates the normality assumption, and it is found that the tracking output rapidly converge towards a good normal distribution approximation. The thesis furthermore investigates the actual risk assessment module to find out how the collision risk should be determined. The traditional way to do this is to focus on a critical time point (time of closest point of approach, time of maximum collision risk etc.). A recently proposed alternative is to evaluate the risk over a horizon of time. The difference between these two concepts is evaluated. An approximate computational method for integrated risk, suitable for real-time implementations, is also validated. It is shown that the risk seen over a horizon of time is much more robust to estimation accuracy than the risk from a critical time point. The integrated risk also gives a more intuitively correct result, which makes it possible to implement the risk assessment module with a direct connection to specified aviation safety rules.
Boček, Michal. "Rozšíření řídicího systému modelu letadla Skydog o podporu vzdáleného a samočinného řízení Android aplikací". Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2014. http://www.nusl.cz/ntk/nusl-236091.
Pełny tekst źródłaLai, John. "A hidden Markov model and relative entropy rate approach to vision-based dim target detection for UAV sense-and-avoid". Thesis, Queensland University of Technology, 2010. https://eprints.qut.edu.au/34462/1/John_Lai_Thesis.pdf.
Pełny tekst źródłaBatelka, Marek. "Využitelnost civilních antikolizních systémů bezpilotními prostředky". Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2011. http://www.nusl.cz/ntk/nusl-229453.
Pełny tekst źródłaDuberg, Daniel. "Safe Navigation of a Tele-operated Unmanned Aerial Vehicle". Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-221701.
Pełny tekst źródłaObemannad luftfarkoster (UAV:er) kan navigera i inomhusmiljöer och genom miljöer som är farliga eller svåra att nå för människor. Detta gör dem lämpliga för användning i sök- och räddningsuppdrag och av akutmottagning och rättsväsende genom ökad situationsmedvetenhet. Dock är det även för en erfaren UAV-teleoperatör krävande och svårt att kontrollera en UAV i dessa situationer utan att kollidera med hinder. Denna avhandling presenterar ett människa-UAV-gränssnitt tillsammans med en kollisionsundvikande metod, båda optimerade för en mänsklig teleoperatör. Målet är att förenkla uppgiften att navigera en UAV i inomhusmiljöer. Utvärdering av systemet görs genom att testa det mot ett antal användningsfall och en användarstudie. Resultatet av denna avhandling är en kollisionsundvikande metod som lyckas skydda UAV från hinder och samtidigt tar hänsyn till operatörens avsikter.
Alturbeh, Hamid. "Collision avoidance systems for UAS operating in civil airspace". Thesis, Cranfield University, 2014. http://dspace.lib.cranfield.ac.uk/handle/1826/9295.
Pełny tekst źródłaDE, FILIPPIS LUCA. "Advanced Path Planning and Collision Avoidance Algorithms for UAVs". Doctoral thesis, Politecnico di Torino, 2012. http://hdl.handle.net/11583/2497102.
Pełny tekst źródłaSahawneh, Laith Rasmi. "Airborne Collision Detection and Avoidance for Small UAS Sense and Avoid Systems". BYU ScholarsArchive, 2016. https://scholarsarchive.byu.edu/etd/5840.
Pełny tekst źródłaDeaton, John Logan. "Investigating collision avoidance for small UAS using cooperative surveillance and ACAS X". Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/122375.
Pełny tekst źródłaThesis: S.M., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2019
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 115-118).
Small Unmanned Aircraft Systems (sUAS) have proliferated over the last decade. While these platforms offer many benefits to society, they pose a dangerous mid-air collision hazard. In order to safely integrate into airspace shared by other users, sUAS must be able to avoid collisions with manned aircraft. To better understand sUAS flight behavior and inform Collision Avoidance (CA) systems for sUAS, over 600 active UAS platforms were reviewed. The mean climb rate capability was 720 feet per minute (fpm) for all reviewed sUAS, which suggests that CA systems currently used by manned aircraft (which require 2,500 fpm climb capability) would be inappropriate for implementation on sUAS. Novel CA systems are therefore required. Next, to assess the feasibility of CA system equipage on sUAS, the Size, Weight, Power, and Cost (SWaP-C) of equipment necessary for CA systems were studied.
It was determined that a complete CA system utilizing cooperative surveillance could weigh less than 70 grams and require less than 2 W of average input power. Because cooperative surveillance broadcasts from sUAS could overload the spectrum currently used to share aviation information, signal transmissions were simulated for a population of sUAS broadcasting alongside current users. While transmitting sUAS would quickly degrade performance on the busy 1090 MHz channel, the 978 MHz channel could potentially support about 1 transmitting sUAS per square kilometer if sUAS broadcast ADS-B signals at only 80 mW. Finally, close encounters between sUAS and manned aircraft were simulated in the Mode C Veil environment to evaluate threat resolution options used by different CA systems. Manned aircraft using existing CA systems to avoid sUAS would achieve extremely high levels of safety (risk ratios below 0.05) but would experience high rates of alerts.
Furthermore, sUAS are so small that manned aircraft without CA systems would be unlikely to visually see and avoid them. Novel CA systems were modeled on sUAS and were able to avoid manned aircraft with currently-accepted levels of safety (risk ratios below 0.18) even with limited or no vertical maneuvering by using horizontal escape maneuvers (i.e. turns). Alerting rates for horizontal maneuvers were high but may be acceptable for use on sUAS. The new sUAS CA systems cooperated well with existing systems for manned aircraft and resulted in extremely low collision risk (risk ratios below 0.02) in encounters where manned aircraft and sUAS both took action to avoid collisions. Results therefore indicate that sUAS could utilize existing cooperative surveillance systems and prototype CA policies to mitigate close encounters with manned aircraft in Mode C Veils at safety levels that are currently accepted among manned aircraft.
by John Logan Deaton.
S.M.
S.M. Massachusetts Institute of Technology, Department of Aeronautics and Astronautics
Casas, Melo Víctor Fernando [Verfasser], Andreas [Akademischer Betreuer] Mitschele-Thiel, Armin [Gutachter] Zimmermann i Christian [Gutachter] Bettstetter. "Implementable self-organized collision avoidance for UAVs flying alone or in flocks / Víctor Fernando Casas Melo ; Gutachter: Armin Zimmermann, Christian Bettstetter ; Betreuer: Andreas Mitschele-Thiel". Ilmenau : TU Ilmenau, 2021. http://d-nb.info/123396688X/34.
Pełny tekst źródłaDuan, Pengfei. "Automatic Dependent Surveillance-Broadcast (ADS-B) Space-Oriented Message Set Design". Ohio University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1305656769.
Pełny tekst źródłaWikle, Jared Kevin. "Integration of a Complete Detect and Avoid System for Small Unmanned Aircraft Systems". BYU ScholarsArchive, 2017. https://scholarsarchive.byu.edu/etd/6361.
Pełny tekst źródłaTony, Lima Agnel. "Mid-Air Collision Avoidance of Unmanned Aerial Vehicles". Thesis, 2021. https://etd.iisc.ac.in/handle/2005/5349.
Pełny tekst źródłaChu, Hung-Cheng, i 朱弘正. "Design of UAV Formation Flight and Collision Avoidance Based on Geometric Approach". Thesis, 2019. http://ndltd.ncl.edu.tw/handle/d8cr3e.
Pełny tekst źródła淡江大學
航空太空工程學系碩士班
107
This thesis mainly studies the design of the guidance law and collision avoidance control for UAV formation flight. The leader-follower approach was adopted for the guidance law development. The error between the follower’s position and the desired position was used for the generation of the guidance law. The collision avoidance controls involve the collision avoidance for leader and follower, and for follower and follower. The collision avoidance control for leader and follower is based on a geometric collision-cone approach using the line-of-sight vector, the relative speed and the distance between leader and follower as conditions for generation of the control action. The collision avoidance law for the follower and follower is mainly based on the distance between the followers. Gain scheduling was also incorporated for the formation control to avoid large transient during mode transition between collision avoidance control and formation control. Computer simulations, including straight flight, level turn and regrouping were conducted to demonstrate the success of the UAV formation flight and collision avoidance control.
Hsu, Yu-Hsin, i 許毓心. "Reinforcement Learning-based Collision Avoidance and Optimal Trajectory Planning in UAV Communication Networks". Thesis, 2019. http://ndltd.ncl.edu.tw/handle/kzp8m9.
Pełny tekst źródła國立交通大學
電信工程研究所
107
In this thesis, we propose a reinforcement learning approach of collision avoidance and investigate optimal trajectory planning for unmanned aerial vehicle (UAV) communication networks. Specifically, each UAV takes charge of delivering objects in the forward path and collecting data from ground IoT devices in the backward path. We adopt reinforcement learning for assisting UAVs to learn collision avoidance without knowing the trajectories of other UAVs in advance. In addition, for each UAV, we use optimization theory to find out a shortest backward path that assures data collection from all associated IoT devices. To obtain an optimal visiting order for IoT devices, we formulate and solve a no-return traveling salesman problem with neighborhoods (TSPN). Given a visiting order, we formulate and solve a sequence of convex optimization problems to obtain segments of an optimal backward path. We use analytical results and simulation results to justify the usage of the proposed approach. Simulation results show that the proposed approach is superior to a number of alternative approaches.
Raimundo, António Sérgio Lima. "Autonomous Obstacle Collision Avoidance System for UAVs in rescue operations". Master's thesis, 2016. http://hdl.handle.net/10071/13045.
Pełny tekst źródłaOs veículos aéreos não tripulados (UAV) e as suas aplicações estão cada vez mais a ser utilizadas para fins civis e militares. A operacionalidade de um UAV provou que algumas tarefas e operações podem ser feitas facilmente e com uma boa relação de custo-benefício. Hoje em dia, um UAV pode executar tarefas autonomamente, usando navegação por waypoints e um sensor de GPS. Essas tarefas autónomas também são designadas de missões. As missões autónomas poderão ser usadas para diversos propósitos, tais como na meteorologia, sistemas de vigilância, agricultura, mapeamento de áreas e operações de busca e salvamento. Um dos maiores problemas que um UAV enfrenta é a possibilidade de colisão com outros objetos na área, podendo causar danos às estruturas envolventes, aos seres humanos ou ao próprio UAV. Para evitar tais ocorrências, foi desenvolvido e implementado um algoritmo para evitar a colisão de um UAV com outros objetos. O algoritmo "Sense and Avoid" foi desenvolvido como um sistema para UAVs de modo a evitar objetos em rota de colisão. Este algoritmo utiliza um sensor de distância a laser chamado LiDAR (Light Detection and Ranging), para detetar objetos que estão em frente do UAV. Este sensor é ligado a um hardware de bordo, a controladora de voo Pixhawk, que realiza as suas comunicações com outro hardware complementar: o Raspberry Pi. As comunicações entre a estação de controlo ou o operador de comando RC são feitas via telemetria Wi-Fi ou telemetria por rádio. O algoritmo "Sense and Avoid" tem dois modos diferentes: o modo "Brake" e modo "Avoid and Continue". Estes modos operam em diferentes métodos de controlo do UAV. O modo "Brake" é usado para evitar colisões com objetos quando controlado via controlador RC por um operador humano. O modo "Avoid and Continue" funciona nos modos de voo autónomos do UAV, evitando colisões com objetos à vista e prosseguindo com a missão em curso. Nesta dissertação, alguns testes foram realizados para avaliar o desempenho geral do algoritmo "Sense and Avoid". Estes testes foram realizados em dois ambientes diferentes: um ambiente de simulação em 3D e um ambiente ao ar livre. Ambos os modos obtiveram funcionaram com sucesso no ambiente de simulação 3D e o mode “Brake” no ambiente real, provando os seus conceitos.
Manathara, Joel George. "Collision Avoidance And Coalition Formation Of Multiple Unmanned Aerial Vechicles In High Density Traffic Environments". Thesis, 2011. https://etd.iisc.ac.in/handle/2005/2360.
Pełny tekst źródłaManathara, Joel George. "Collision Avoidance And Coalition Formation Of Multiple Unmanned Aerial Vechicles In High Density Traffic Environments". Thesis, 2011. http://etd.iisc.ernet.in/handle/2005/2360.
Pełny tekst źródłaSantos, Ricardo Filipe Cunha. "Vídeo processing unit for USV collision avoidance demonstrator". Master's thesis, 2008. http://hdl.handle.net/10216/58415.
Pełny tekst źródłaTese de mestrado integrado. Engenharia Informátca e Computação. Faculdade de Engenharia. Universidade do Porto. 2008
Santos, Ricardo Filipe Cunha. "Vídeo processing unit for USV collision avoidance demonstrator". Dissertação, 2008. http://hdl.handle.net/10216/58415.
Pełny tekst źródłaTese de mestrado integrado. Engenharia Informátca e Computação. Faculdade de Engenharia. Universidade do Porto. 2008
Fasano, Giancarmine. "Multisensor based fully autonomous non-cooperative collision avoidance system for UAVs". Tesi di dottorato, 2008. http://www.fedoa.unina.it/1836/1/Fasano_Ingegneria_Aerospaziale_Navale_e_della_Qualita.pdf.
Pełny tekst źródła