Gotowa bibliografia na temat „U-NET CNN”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „U-NET CNN”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "U-NET CNN"
Sariturk, Batuhan, i Dursun Zafer Seker. "A Residual-Inception U-Net (RIU-Net) Approach and Comparisons with U-Shaped CNN and Transformer Models for Building Segmentation from High-Resolution Satellite Images". Sensors 22, nr 19 (8.10.2022): 7624. http://dx.doi.org/10.3390/s22197624.
Pełny tekst źródłaChoi, Keong-Hun, i Jong-Eun Ha. "Edge Detection based-on U-Net using Edge Classification CNN". Journal of Institute of Control, Robotics and Systems 25, nr 8 (31.08.2019): 684–89. http://dx.doi.org/10.5302/j.icros.2019.19.0119.
Pełny tekst źródłaDi Benedetto, Alessandro, Margherita Fiani i Lucas Matias Gujski. "U-Net-Based CNN Architecture for Road Crack Segmentation". Infrastructures 8, nr 5 (6.05.2023): 90. http://dx.doi.org/10.3390/infrastructures8050090.
Pełny tekst źródłaDjohar, Muhammad Awaludin, Anita Desiani, Dewi Lestari Dwi Putri, Des Alwine Zayanti, Ali Amran, Irmeilyana Irmeilyana i Novi Rustiana Dewi. "Segmentasi Citra Hati Menggunakan Metode Convolutional Neural Network dengan Arsitektur U-Net". JOURNAL OF INFORMATICS AND TELECOMMUNICATION ENGINEERING 6, nr 1 (23.07.2022): 221–34. http://dx.doi.org/10.31289/jite.v6i1.6751.
Pełny tekst źródłaMiron, Casian, Laura Ioana Grigoras, Radu Ciucu i Vasile Manta. "Eye Image Segmentation Method Based on the Modified U-Net CNN Architecture". Bulletin of the Polytechnic Institute of Iași. Electrical Engineering, Power Engineering, Electronics Section 67, nr 2 (1.06.2021): 41–52. http://dx.doi.org/10.2478/bipie-2021-0010.
Pełny tekst źródłaSariturk, Batuhan, Damla Kumbasar i Dursun Zafer Seker. "Comparative Analysis of Different CNN Models for Building Segmentation from Satellite and UAV Images". Photogrammetric Engineering & Remote Sensing 89, nr 2 (1.02.2023): 97–105. http://dx.doi.org/10.14358/pers.22-00084r2.
Pełny tekst źródłaErdem, Firat, Nuri Erkin Ocer, Dilek Kucuk Matci, Gordana Kaplan i Ugur Avdan. "Apricot Tree Detection from UAV-Images Using Mask R-CNN and U-Net". Photogrammetric Engineering & Remote Sensing 89, nr 2 (1.02.2023): 89–96. http://dx.doi.org/10.14358/pers.22-00086r2.
Pełny tekst źródłaK.Narasimha Rao, Kesani Prudhvidhar Reddy, Gopavarapu Sai Satya Sreekar i Gade Gopinath Reddy. "Retinal blood vessels segmentation using CNN algorithm". international journal of engineering technology and management sciences 7, nr 3 (2023): 499–504. http://dx.doi.org/10.46647/ijetms.2023.v07i03.70.
Pełny tekst źródłaLutsenko, V. S., i A. E. Shukhman. "SEGMENTATION OF MEDICAL IMAGES BY CONVOLUTIONAL NEURAL NETWORKS". Vestnik komp'iuternykh i informatsionnykh tekhnologii, nr 216 (czerwiec 2022): 40–50. http://dx.doi.org/10.14489/vkit.2022.06.pp.040-050.
Pełny tekst źródłaYounisse, Remah, Rawan Ghnemat i Jaafer Al Saraireh. "Fine-tuning U-net for medical image segmentation based on activation function, optimizer and pooling layer". International Journal of Electrical and Computer Engineering (IJECE) 13, nr 5 (1.10.2023): 5406. http://dx.doi.org/10.11591/ijece.v13i5.pp5406-5417.
Pełny tekst źródłaRozprawy doktorskie na temat "U-NET CNN"
Scotti, Alessandro. "Sviluppo e validazione di un nuovo approccio basato su reti neurali convoluzionali 3D per la valutazione della progressione della malattia policistica renale autosomica dominante". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020.
Znajdź pełny tekst źródłaHellgren, Robin, i Martin Axelsson. "An evaluation of using a U-Net CNN with a random forest pre-screener : On a dataset of hand-drawn maps provided by länsstyrelsen i Jönköping". Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-20003.
Pełny tekst źródłaVincenzi, Fabian. "Reti neurali convoluzionali per il miglioramento di immagini tomografiche ad angoli limitati". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/22199/.
Pełny tekst źródłaBerezina, Polina. "Enhancing Hurricane Damage Assessment from Satellite Images Using Deep Learning". The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1587554383454681.
Pełny tekst źródłaDíaz, Pinto Andrés Yesid. "Machine Learning for Glaucoma Assessment using Fundus Images". Doctoral thesis, Universitat Politècnica de València, 2019. http://hdl.handle.net/10251/124351.
Pełny tekst źródła[CAT] Les imatges de fons d'ull són molt utilitzades pels oftalmòlegs per a l'avaluació de la retina i la detecció de glaucoma. Aquesta patologia és la segona causa de ceguesa al món, segons estudis de l'Organització Mundial de la Salut (OMS). En aquesta tesi doctoral, s'estudien algoritmes d'aprenentatge automàtic (machine learning) per a l'avaluació automàtica del glaucoma usant imatges de fons d'ull. En primer lloc, es proposen dos mètodes per a la segmentació automàtica. El primer mètode utilitza la transformació Watershed Estocàstica per segmentar la copa òptica i després mesurar característiques clíniques com la relació Copa / Disc i la regla ISNT. El segon mètode és una arquitectura U-Net que s'usa específicament per a la segmentació del disc òptic i la copa òptica. A continuació, es presenten sistemes automàtics d'avaluació del glaucoma basats en xarxes neuronals convolucionals (CNN per les sigles en anglès). En aquest enfocament s'utilitzen diferents models entrenats en ImageNet com classificadors automàtics de glaucoma, usant fine-tuning. Aquesta nova tècnica permet detectar el glaucoma sense segmentació prèvia o extracció de característiques. A més, aquest enfocament presenta una millora considerable del rendiment comparat amb altres treballs de l'estat de l'art. En tercer lloc, donada la dificultat d'obtenir grans quantitats d'imatges etiquetades (glaucoma / no glaucoma), aquesta tesi també aborda el problema de la síntesi d'imatges de la retina. En concret es van analitzar dues arquitectures diferents per a la síntesi d'imatges, les arquitectures Variational Autoencoder (VAE) i la Generative adversarial Networks (GAN). Amb aquestes arquitectures es van generar imatges sintètiques que es van analitzar qualitativament i quantitativament, obtenint un rendiment similar a altres treballs a la literatura. Finalment, en aquesta tesi es planteja la utilització d'un tipus de GAN (DCGAN) com a alternativa als sistemes automàtics d'avaluació del glaucoma presentats anteriorment. Per assolir aquest objectiu es va implementar un algoritme d'aprenentatge semi-supervisat.
[EN] Fundus images are widely used by ophthalmologists to assess the retina and detect glaucoma, which is, according to studies from the World Health Organization (WHO), the second cause of blindness worldwide. In this thesis, machine learning algorithms for automatic glaucoma assessment using fundus images are studied. First, two methods for automatic segmentation are proposed. The first method uses the Stochastic Watershed transformation to segment the optic cup and measures clinical features such as the Cup/Disc ratio and ISNT rule. The second method is a U-Net architecture focused on the optic disc and optic cup segmentation task. Secondly, automated glaucoma assessment systems using convolutional neural networks (CNNs) are presented. In this approach, different ImageNet-trained models are fine-tuned and used as automatic glaucoma classifiers. These new techniques allow detecting glaucoma without previous segmentation or feature extraction. Moreover, it improves the performance of other state-of-art works. Thirdly, given the difficulty of getting large amounts of glaucoma-labelled images, this thesis addresses the problem of retinal image synthesis. Two different architectures for image synthesis, the Variational Autoencoder (VAE) and Generative Adversarial Networks (GAN) architectures, were analysed. Using these models, synthetic images that were qualitative and quantitative analysed, reporting state-of-the-art performance, were generated. Finally, an adversarial model is used to create an alternative automatic glaucoma assessment system. In this part, a semi-supervised learning algorithm was implemented to reach this goal.
The research derived from this doctoral thesis has been supported by the Generalitat Valenciana under the scholarship Santiago Grisolía [GRISOLIA/2015/027].
Díaz Pinto, AY. (2019). Machine Learning for Glaucoma Assessment using Fundus Images [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/124351
TESIS
Sousa, Joana Vale Amaro de. "Lung Segmentation in CT Images: A CNN U-Net hybrid approach on a cross-cohort dataset". Master's thesis, 2021. https://hdl.handle.net/10216/137790.
Pełny tekst źródłaKsiążki na temat "U-NET CNN"
Tse, Peter U. Two Types of Libertarian Free Will Are Realized in the Human Brain. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780190460723.003.0010.
Pełny tekst źródłaBiałowąs, Sylwester, red. Experimental design and biometric research. Toward innovations. Wydawnictwo Uniwersytetu Ekonomicznego w Poznaniu, 2021. http://dx.doi.org/10.18559/978-83-8211-079-1.
Pełny tekst źródłaSkupio, Rafał. Zastosowanie nieinwazyjnych pomiarów rdzeni wiertniczych do zwiększenia informacji na temat parametrów skał zbiornikowych. Instytut Nafty i Gazu - Państwowy Instytut Badawczy, 2022. http://dx.doi.org/10.18668/pn2022.237.
Pełny tekst źródłaLos ancestrales juegos y deportes de pelota maya en Mesoamérica contemporánea. Universidad Libre sede principal, 2022. http://dx.doi.org/10.18041/978-628-7580-08-4.
Pełny tekst źródłaCzęści książek na temat "U-NET CNN"
Kumaravelan, Umashankar, i M. Nivedita. "Localized Super Resolution for Foreground Images Using U-Net and MR-CNN". W Lecture Notes in Electrical Engineering, 25–39. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-7169-3_3.
Pełny tekst źródłaSharma, Utkarsh, Nimish Nigam, Ujjawal Kumar, Vinay Kumar, Sadanand Yadav, Ashish Pandey i Rakesh Kumar Singh. "Abnormality Detection in Heart Using Combination of CNN, RNN and U-Net". W VLSI, Communication and Signal Processing, 135–46. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0973-5_10.
Pełny tekst źródłaKonopczyński, Tomasz, Ron Heiman, Piotr Woźnicki, Paweł Gniewek, Marie-Cécilia Duvernoy, Oskar Hallatschek i Jürgen Hesser. "Instance Segmentation of Densely Packed Cells Using a Hybrid Model of U-Net and Mask R-CNN". W Artificial Intelligence and Soft Computing, 626–35. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-61401-0_58.
Pełny tekst źródłaMaqsood, Sarmad, Robertas Damasevicius i Faisal Mehmood Shah. "An Efficient Approach for the Detection of Brain Tumor Using Fuzzy Logic and U-NET CNN Classification". W Computational Science and Its Applications – ICCSA 2021, 105–18. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-86976-2_8.
Pełny tekst źródłaChelle-Michou, Cyril, i Urs Schaltegger. "U–Pb Dating of Mineral Deposits: From Age Constraints to Ore-Forming Processes". W Isotopes in Economic Geology, Metallogenesis and Exploration, 37–87. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-27897-6_3.
Pełny tekst źródłaZhang, Jindan, Jun Cai, Ying Su, Qingyou He i Xinyue Lin. "Research and Development and Pilot Application of Innovative Technology of Prefabricated Concrete". W Lecture Notes in Civil Engineering, 226–37. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1260-3_20.
Pełny tekst źródłaHogan, Ciarán, i Ganesh Sistu. "Automatic Vehicle Ego Body Extraction for Reducing False Detections in Automated Driving Applications". W Communications in Computer and Information Science, 264–75. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-26438-2_21.
Pełny tekst źródłaSikdar, Debosmita, Ivy Kanungo i Dipanwita Das. "Microbial Enzymes: A Summary Focusing on Biotechnology Prospective for Combating Industrial Pollutants". W Proceedings of the Conference BioSangam 2022: Emerging Trends in Biotechnology (BIOSANGAM 2022), 70–76. Dordrecht: Atlantis Press International BV, 2022. http://dx.doi.org/10.2991/978-94-6463-020-6_8.
Pełny tekst źródłaYildirim, Kemal, Sami Al-Nawaiseh, Sophia Ehlers, Lukas Schießer, Michael Storck, Tobias Brix, Nicole Eter i Julian Varghese. "U-Net-Based Segmentation of Current Imaging Biomarkers in OCT-Scans of Patients with Age Related Macular Degeneration". W Caring is Sharing – Exploiting the Value in Data for Health and Innovation. IOS Press, 2023. http://dx.doi.org/10.3233/shti230315.
Pełny tekst źródłaIslam, Mohammad Tariqul, Ferdaus Ahmed, Mowafa Househ i Tanvir Alam. "Optical Disc Segmentation from Retinal Fundus Images Using Deep Learning". W Studies in Health Technology and Informatics. IOS Press, 2023. http://dx.doi.org/10.3233/shti230576.
Pełny tekst źródłaStreszczenia konferencji na temat "U-NET CNN"
Zhang, Chengzhu, i Yuxiang Xing. "CT artifact reduction via U-net CNN". W Image Processing, redaktorzy Elsa D. Angelini i Bennett A. Landman. SPIE, 2018. http://dx.doi.org/10.1117/12.2293903.
Pełny tekst źródłaGhanshala, Anshul, Aakarshan Chauhan, Manoj Diwakar i Sachin Sharma. "Brain Tumor Detection Using U-Net and 3D CNN Architecture". W 2022 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS). IEEE, 2022. http://dx.doi.org/10.1109/icccis56430.2022.10037660.
Pełny tekst źródłaLiu, Yang, i Wei Yang. "Automatic liver segmentation using U-net in the assistance of CNN". W 2020 International Conference on Intelligent Computing, Automation and Systems (ICICAS). IEEE, 2020. http://dx.doi.org/10.1109/icicas51530.2020.00083.
Pełny tekst źródłaSuman, Abdulla Al, Yash Khemchandani, Md Asikuzzaman, Alexandra Louise Webb, Diana M. Perriman, Murat Tahtali i Mark R. Pickering. "Evaluation of U-Net CNN Approaches for Human Neck MRI Segmentation". W 2020 Digital Image Computing: Techniques and Applications (DICTA). IEEE, 2020. http://dx.doi.org/10.1109/dicta51227.2020.9363385.
Pełny tekst źródłaHsu, Aaron W., i Rodrigo Girão Serrão. "U-Net CNN in APL: Exploring Zero-Framework, Zero-Library Machine Learning". W ARRAY '23: 9th ACM SIGPLAN International Workshop on Libraries, Languages and Compilers for Array Programming. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3589246.3595371.
Pełny tekst źródłaSushma, B., C. K. Raghavendra i J. Prashanth. "CNN based U-Net with Modified Skip Connections for Colon Polyp Segmentation". W 2021 5th International Conference on Computing Methodologies and Communication (ICCMC). IEEE, 2021. http://dx.doi.org/10.1109/iccmc51019.2021.9418037.
Pełny tekst źródłaLi, Yuqin, Zhengang Jiang, Ke Zhang, Weili Shi, Fei He i Jianhua Liu. "Dense-U-Net: A novel densely connected CNN for lung fields segmentation". W 2020 International Conference on Virtual Reality and Visualization (ICVRV). IEEE, 2020. http://dx.doi.org/10.1109/icvrv51359.2020.00035.
Pełny tekst źródłaNour, Abdala, Sherif Saad i Boubakeur Boufama. "Prostate biomedical images segmentation and classification by using U-NET CNN model". W BCB '21: 12th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3459930.3471169.
Pełny tekst źródłaWang, Yinglong, i Lyu Zhou. "A Lung Nodule Detector Based on U-Net and 3D-CNN Model". W 2021 IEEE International Conference on Computer Science, Electronic Information Engineering and Intelligent Control Technology (CEI). IEEE, 2021. http://dx.doi.org/10.1109/cei52496.2021.9574604.
Pełny tekst źródłaHAN, GUILAI, WEI LIU, BENGUO YU, XIAOLING LI, LU LIU i HAIXIA LI. "The Detection and Recognition of Pulmonary Nodules Based on U-net and CNN". W CSAI 2020: 2020 4th International Conference on Computer Science and Artificial Intelligence. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3445815.3445838.
Pełny tekst źródłaRaporty organizacyjne na temat "U-NET CNN"
Mevarech, Moshe, Jeremy Bruenn i Yigal Koltin. Virus Encoded Toxin of the Corn Smut Ustilago Maydis - Isolation of Receptors and Mapping Functional Domains. United States Department of Agriculture, wrzesień 1995. http://dx.doi.org/10.32747/1995.7613022.bard.
Pełny tekst źródłaDownard, Alicia, Stephen Semmens i Bryant Robbins. Automated characterization of ridge-swale patterns along the Mississippi River. Engineer Research and Development Center (U.S.), kwiecień 2021. http://dx.doi.org/10.21079/11681/40439.
Pełny tekst źródłaReine, Kevin. A literature review of beach nourishment impacts on marine turtles. Engineer Research and Development Center (U.S.), marzec 2022. http://dx.doi.org/10.21079/11681/43829.
Pełny tekst źródłaPulugurtha, Srinivas S., Abimbola Ogungbire i Chirag Akbari. Modeling and Evaluating Alternatives to Enhance Access to an Airport and Meet Future Expansion Needs. Mineta Transportation Institute, kwiecień 2023. http://dx.doi.org/10.31979/mti.2023.2120.
Pełny tekst źródłaTaylor. L51755 Development and Testing of an Advanced Technology Vibration Transmission. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), lipiec 1996. http://dx.doi.org/10.55274/r0010124.
Pełny tekst źródła