Rozprawy doktorskie na temat „Two-dimensional molybdenum disulfide”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 22 najlepszych rozpraw doktorskich naukowych na temat „Two-dimensional molybdenum disulfide”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj rozprawy doktorskie z różnych dziedzin i twórz odpowiednie bibliografie.
Ganger, Zachary Durnell. "Growth of Two-Dimensional Molybdenum Disulfide via Chemical Vapor Deposition". Wright State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=wright1557258478934291.
Pełny tekst źródłaTsai, I.-Ling. "Magnetic properties of two-dimensional materials : graphene, its derivatives and molybdenum disulfide". Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/magnetic-properties-of-twodimensional-materials-graphene-its-derivatives-and-molybdenum-disulfide(59dcba1b-332e-4a58-86f6-80ed56c7fdd1).html.
Pełny tekst źródłaReifler, Ellen Sarah. "Investigation of Intrinsic and Tunable Properties of Two-Dimensional Transition-Metal Dichalcogenides for Optical Applications". Research Showcase @ CMU, 2018. http://repository.cmu.edu/dissertations/1182.
Pełny tekst źródłaLee, Jaesung. "Optically Transduced Two-Dimensional (2D) Resonant Nanoelectromechanical Systems and Their Emerging Applications". Case Western Reserve University School of Graduate Studies / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=case1474972552266241.
Pełny tekst źródłaKretschmer, Silvan [Verfasser], Jürgen [Gutachter] Faßbender i Jani [Gutachter] Kotakoski. "Effects of Electron and Ion Irradiation on Two-Dimensional Molybdenum-Disulfide / Silvan Kretschmer ; Gutachter: Jürgen Faßbender, Jani Kotakoski". Dresden : Technische Universität Dresden, 2020. http://d-nb.info/122705307X/34.
Pełny tekst źródłaYang, Rui. "Coupling Two-Dimensional (2D) Nanoelectromechanical Systems (NEMS) with Electronic and Optical Properties of Atomic Layer Molybdenum Disulfide (MoS2)". Case Western Reserve University School of Graduate Studies / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=case1459776436.
Pełny tekst źródłaHagerty, Phillip. "Physical Vapor Deposition of Materials for Flexible Two Dimensional Electronic Devices". University of Dayton / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1460739765.
Pełny tekst źródłaPark, Juhong. "Fabrication of Large-Scale and Thickness-Modulated Two-Dimensional Transition Metal Dichalcogenides [2D TMDs] Nanolayers". Thesis, University of North Texas, 2019. https://digital.library.unt.edu/ark:/67531/metadc1505271/.
Pełny tekst źródłaTang, Yanping, Dongqing Wu, Yiyong Mai, Hao Pan, Jing Cao, Chongqing Yang, Fan Zhang i Xinliang Feng. "A two-dimensional hybrid with molybdenum disulfide nanocrystals strongly coupled on nitrogen-enriched graphene via mild temperature pyrolysis for high performance lithium storage". Royal Society of Chemistry, 2014. https://tud.qucosa.de/id/qucosa%3A36311.
Pełny tekst źródłaWu, Min. "Adhesion and Surface Energy Profiles of Large-area Atomic Layers of Two-dimensional MoS2 on Rigid Substrates by Facile Methods". Thesis, University of North Texas, 2016. https://digital.library.unt.edu/ark:/67531/metadc849762/.
Pełny tekst źródłaYuan, Kai, Xiaodong Zhuang, Haiyan Fu, Gunther Brunklaus, Michael Forster, Yiwang Chen, Xinliang Feng i Ullrich Scherf. "Two-Dimensional Core-Shelled Porous Hybrids as Highly Efficient Catalysts for Oxygen Reduction Reaction". Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2018. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-235469.
Pełny tekst źródłaKuba, Jakub. "Studium fotoluminiscence tenkých vrstev MoS2". Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2016. http://www.nusl.cz/ntk/nusl-254284.
Pełny tekst źródła"Surface Treatment of Two-Dimensional Molybdenum Disulfide". Doctoral diss., 2018. http://hdl.handle.net/2286/R.I.48474.
Pełny tekst źródłaDissertation/Thesis
Doctoral Dissertation Mathematics 2018
Jin, Wencan. "Electronic Structure and Surface Physics of Two-dimensional Material Molybdenum Disulfide". Thesis, 2017. https://doi.org/10.7916/D8BC4047.
Pełny tekst źródłaKretschmer, Silvan. "Effects of Electron and Ion Irradiation on Two-Dimensional Molybdenum-Disulfide". 2019. https://tud.qucosa.de/id/qucosa%3A38070.
Pełny tekst źródłaSeit ihrer Entdeckung Anfang des 21. Jahrhunderts haben sich zwei-dimensionale (2D) Materialien zu einer der spannendsten Materialklassen im Forschungsfeld aus Materialwissenschaft, Physik und Chemie entwickelt. Ihre einzigartigen Eigenschaften versprechen eine Vielzahl potentieller Anwendungen in der Nanoelektronik, für Quantencomputer und in der Oberflächenwissenschaft. Beflügelt durch das wachsende Interesse an ihrem Verhalten und der Tatsache, dass sie die idealen Proben für die Transmissions-Elektronen-Mikroskopie (TEM) darstellen – ihre Geometrie erlaubt es, jedes einzelne Atom zu identifizieren – sind die Forschungen an 2D-Materialien rapide vorangeschritten. Ihre Morphologie – 2D-Materialien bestehen nur aus “Oberfläche” – bedingt zugleich ihre Sensitivität bezüglich Strahlschäden. Hochenergetische Elektronen lösen sehr leicht Atome aus dem 2D-Material und induzieren Defekte. Obwohl dies im Allgemeinen unerwünscht ist – Ziel ist eine nicht-destruktive Bildgebung – erlaubt es doch präzise Einblicke in die Schadensentstehung im TEM. Überdies können 2D-Materialien mit Hilfe des Elektronenstrahls mit atomarer Auflösung strukturiert werden. Alternativ kann die Strukturierung des 2D-Materials über fokussierte Ionenstrahlung erfolgen, weshalb es lohnenswert erscheint, auch deren Effekt auf 2D-Materialien zu untersuchen. In dieser Arbeit werden die Effekte von Elektronen- und Ionenstrahlung auf 2D-Materialien aus theoretischer Sicht exemplarisch an 2D-MoS2 untersucht. Besonderes Augenmerk liegt dabei auf dem kombinierten Effekt von elektronischer Anregung und dem direkten Impulsübertrag durch hochenergetische Elektronen (Kollisionsschaden) in 2D-MoS2 , der durch die Anwendung von Ab-Initio-Simulationstechniken wie der Ehrenfest-Molekulardynamik, basierend auf zeitabhängiger Dichtefunktionaltheorie (DFT), studiert wird. Dabei liegt die Betonung auf der Kombination beider Effekte, da weder Ionisierungs- noch Kollisionsschäden allein die experimentell beobachtete Defekterzeugung unterhalb der Displacement Threshold – der notwendigen Mindestenergie, um ein Atom aus dem reinen Material herauszulösen – erklären. Ein möglicher Mechanismus der Defekterzeugung, basierend auf der Lokalisierung der elektronischen Anregung an der entstehenden Vakanzstelle, wird vorgeschlagen. Die lokalisierte Anregung führt dabei schließlich zu einem signifikanten Absinken der Displacement Threshold. Die Kombination von elektronischer Anregung und Kollisionsschaden trägt neben strahlinduzierten chemischen Reaktionen zur Erklärung der beobachteten Schäden unterhalb der Displacement Threshold in Niederspannungs-TEM-Experimenten bei. Neben nicht-destruktiver Bildgebung können Elektronenstrahlen auch dafür benutzt werden, 2D-Materialien gezielt zu modifizieren. In diesem Sinne wird der elektronenstrahl-induzierte Phasenübergang in 2D-MoS2 , bei dem sich das Material von einem halbleitenden in einen metallischen Zustand transformiert, betrachtet. Die Phasenenergetik und ein möglicher Transformationsmechanismus werden unter Zuhilfenahme von DFT-basierten Ab-Initio-Simulationen untersucht. Das detaillierte Verständnis der Interaktion des Elektronenstrahls mit dem 2D-Material verspricht dabei die Strukturierungsauflösung zu verbessern und ermöglicht Schaltkreisdesign auf der Nanoskala. Fokussierte Ionenstrahlen, wie sie in Ionenstrahlinstrumenten – wie dem Helium-Ionen-Mikroskop (HIM) zum Einsatz kommen – stellen ein weiteres häufig verwendetes Werkzeug zur Modifikation sowie zur Bildgebung von 2D-Materialien dar. Ionenstrahlexperimente – üblicherweise mit dem auf einem Substrat platzierten 2D-Material durchgeführt – werden hingegen oft mit Simulationen für freistehende 2D-Materialien rationalisiert, wobei jegliche Einwirkung des Substrats vernachlässigt wird. Die Kombination von Monte-Carlo-Simulationen mit Molekulardynamik-Simulationen (auf der Basis analytischer Potentiale) in dieser Arbeit verdeutlicht, dass das Substrat eine wichtige Rolle in der Defekterzeugung spielt und nicht vernachlässigt werden kann. Besonders für leichte Ionen, wie He und Ne, wie sie typischerweise im HIM zum Einsatz kommen, sollte der Effekt des Substrats berücksichtigt werden. Dieses führt für typische Ionenenergien im HIM – im Vergleich zum freistehenden 2D-Material – zu einer ansteigenden Anzahl an Defekten und einer breiteren räumlichen Defektverteilung, welche die Strukturierungsauflösung begrenzt.
Yu, Cheng-Li, i 余承澧. "Spontaneous Emission Enhancement in Two- dimensional Molybdenum Disulfide (MoS2) using Planar Hyperbolic Metamaterials". Thesis, 2017. http://ndltd.ncl.edu.tw/handle/6q3dy7.
Pełny tekst źródła國立交通大學
光電工程研究所
105
Recently, increasing attentions are paid to the two-dimensional materials especially TMDCs due to its direct band gap light emission. It was view as a next generation semiconductor materials which would apply to the optoelectronic device. However, challenging of TMDCs was that they suffered weak quantum yield. Therefore, in this study, we demonstrated the spontaneous emmission enhancement of MoS2 on the planar hyperbolic metamaterials (P- HMMs). In the first part, we designed the planar P-HMM at the PL wavelength of MoS2 which have the better mode coupling in the vertical direction compared to multilayers HMMs. Moreover, its anisotropic property make the PL of MoS2 led to in-plane confinement and resonance. Therefore, the strong coupling between structure and two-dimensional materials and spontaneous emission enhancement was observed in both experiment and simulation. In the second part, we started to curved the planar 1-D HMM into the concentric planar HMM (CPHMM) because we expected the better resonance in the ring cavity. On one hand, because the concentric structure could support the Whisper Gallery Mode (WGM) resonance compared to one dimensional resonance, the higher spontaneous emission enhancement of MoS2 with CP-HMM was observed than enhancement with P-HMM. On the other hand, by the photoluminescence mapping analysis, the highest happened at the inner edge of CP-HMM than other position of CP-HMM. It meant the energy concentration at the inner edge which led to the stronger mode coupling to the two-dimensional materials led to the higher enhancement. The similar results was also confirmed by the simulation results by Finite Element Method. Therefore, it showed the possibility to develop the ultrasmall light source combing subwavelength cavity and atomic thick two-dimensional materials.
Katoch, Jyoti. "Electronic properties and atomic scale microscopy of two dimensional materials: graphene and molybdenum disulfide". Doctoral diss., 2014. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/6117.
Pełny tekst źródłaPh.D.
Doctorate
Physics
Sciences
Physics
Chien, Wei-De, i 簡瑋德. "Fabrication of two-dimensional molybdenum disulfide thin film also the study on optical characteristics and applications". Thesis, 2017. http://ndltd.ncl.edu.tw/handle/19033913725626426688.
Pełny tekst źródła國立臺灣科技大學
電子工程系
105
The theme of this thesis is focused on the preparation and application of molybdenum disulfide (MoS2) film at the atomic layer. MoS2 thin films were deposited by chemical vapor deposition (CVD) method on the quartz and sapphire substrates. After the MoS2 thin film was synthesized, the morphology and film continuity of the substrate were analyzed by optical microscopy. Raman scattering was used to analyze the atomic vibration mode of the MoS2 thin film. The atom force microscopy (AFM) showed the epitaxial thickness are atomic layer. Optical properties of near-band-edge emission of MoS2 thin film using photoluminescence (PL) measurements in the temperature range between 12 K and 300 K. Bound exciton has been observed at low temperature. On the other hand, transmittance experiment observed free A exciton and free B exciton which are caused by electron spin splitting. At the application of MoS2 thin film, we used MoS2 to fabricate field effect transistor (FET) channel and photodetector. Beside, we studied of the optoelectronic structure for the MoS2 thin film and we made into photoconductive detectors. Finally, the oxygen plasma treatment was used to induce oxygen atoms into the MoS2. The better optoelectronic characteristics due to the plasma treatment doped MoS2. The tunneling current increases exponentially with doping concentration. By applying our fabricating method, the MoS2 thin film provides a new application of semiconductor device.
Huang, Zheng-Jie, i 黃政傑. "Characterization and Study of Two Dimensional Material Molybdenum Disulfide Thin Film Transistors with High-k Gate Dielectric". Thesis, 2015. http://ndltd.ncl.edu.tw/handle/57997276730441703505.
Pełny tekst źródła國立臺灣大學
電子工程學研究所
103
In this thesis, the mechanically exfoliated 2D material MoS2 nanosheet was used to fabricate thin film transistor and their electrical properties were investigated as well. By checking their thickness by optical microscopy and atomic force microscopy, the nanosheet with an appropriate thickness can be selected. It was found that the ohmic contact on MoS2 can be achieved by low work function metal titanium. The performance of TFTs achieved the high on/off current ratio up to 8 th order of magnitude and the mobility of 16 cm2/V-sec. However, in order to identify MoS2 thickness on SiO2/Si substrate by means of better optical interference, the thickness of silicon dioxide was limited to 300nm thick. The thick oxide lead to very high gate control voltage. To reduce the operation voltage, the use of thinner high-k gate dielectric Al2O3 and HfO2 were used, resulting in much better performances than traditional SiO2. The on/off current ratio for Al2O3 gate insulator thin film transistor was 6×107 and mobility of 23 cm2/V-sec. HfO2 gate insulator could even boost the mobility to 28 cm2/V-sec and the sub-threshold swing to only 127mV/dec, combining with the gate operation voltage below ±1 V. In addition, it was also found that the oxygen and water molecules were easily absorbed at the MoS2 surface in air, which would deteriorate the stability and hysteresis of devices. Finally, the high vacuum measurement method and passivation layer were used to improve the stability.
Tsai, Yi-Chia, i 蔡易珈. "First-Principle Calculations of the Electronic Structure of Two-Dimensional Materials: Doping Engineering of Molybdenum Disulfide and Scandium Contact of Black Phosphorus". Thesis, 2018. http://ndltd.ncl.edu.tw/handle/5tt9h4.
Pełny tekst źródła國立交通大學
電信工程研究所
106
The semiconductor industry has undergone a huge development over the past fifty years. The technology node has finally scaled down to five nanometer which allows designers to devise more complicated and diverse functions and systems in the same silicon chip. Driven by the big data and artificial intelligence technology, the need for high-performance logic circuit is growing astronomically. However, miniaturization which was used to boost the performance of transistors is limited by Moore's law and quantum mechanics. Although industry is still trying to challenge the limitation of miniaturization, advanced alternative materials equipping with superb material property has gaining importance from both academia and industry. Among them, the applications of low-dimensional materials are the cynosure of all eyes. People's interest in two-dimensional burgeoned since graphene was exfoliated from graphite in 2004. However, the zero-gap property of graphene limits its potential in logic design. The invention of monolayer transition metal dichalcogenide transistor in 2011 and few-layer black phosphorus transistor in 2014 grab more attention. However, researching how to implement two-dimensional materials in next-generation integrated circuit is still an important topic of semiconductor industry. One of the emerging topics is how to modulate the electronic property of two-dimensional by doping engineering, especially for molybdenum disulfide because it is promising for optoelectronics. In the traditional silicon technology, the elements in group III and V, such as boron and arsenic, are frequently used as dopants for p-type and n-type semiconductor. However, distinct from the bulk size of silicon, the surface effect is significant in two-dimensional materials due to higher surface/volume ratio. Also, because molybdenum disulfide is constructed by molybdenum and sulfur elements, therefore it is an urgent task to find out the proper dopants and doping levels that lead to n-type or p-type property. In this thesis, we apply blocked Davidson iteration to solve Kohn-Sham equation. We also integrate the model with empirical van der Waals correction to describe the interaction among atoms and calculate the electronic structure. In practical, we exploit VASP first-principles technical software for the test of exchange-correlation functionals, the atomic relaxation, and the calculation of energy levels. Based on the methodology, we investigate the impact of transition metal dopants on the electronic property of monolayer molybdenum disulfide using first-principles calculation. Firstly, we verify and calibrate the parameters and models by comparing with experimental measurement. We discuss how the dopants modulate the vacuum potential, electron affinity, work function, and Fermi energy of monolayer molybdenum disulfide by analyzing charge transfer. Meanwhile, we consider the effect of doping level on the Fermi energy for each dopant and categorize the proper dopant and doping level for n-type and p-type monolayer molybdenum disulfide. The other urgent task is to explore the proper electrode materials for black phosphorus. Although black phosphorus has a high carrier mobility, but the high contact resistance keeps black phosphorus from fully wield its excellent material property. The significant contact resistance was also observed in one-dimensional materials, such as carbon nanotube, and other kinds of two-dimensional materials, such as molybdenum disulfide, however, they had already been well-studied. Black phosphorus, on the contrary, is the youngest member in the two-dimensional family, thus the corresponding research are still progressing. It worth noting that an international researcher used scandium as contact material and measured a high performance, but lacks a theoretical explanation. In this thesis, we first propose the revolutionary hybrid exchange-correlation functional to lift the computational accuracy and boost the reliability by calibrating with experiments. Based on the accuracy in atomic and electronic structures, we construct the interface between contact materials and trilayer black phosphorus to analyze the interfacial binding behavior and the impact of binding on the other layers of trilayer black phosphorus. We analyze the performance of contact material from the insight of interfacial potential, charge density, charge transfer, and density of states. Finally, we conclude that why scandium electrode leads to superior performance. In short, this thesis mainly focuses on how the transition metal dopants modulate the electronic property of monolayer molybdenum disulfide and the impact of contact materials on the electronic property of black phosphorus. The results of this thesis can be a valuable reference for the development of next-generation transistor and can provide contemporary semiconductor industry to develop and improve the innovative technology.
Ali, Rajab S. K. "Engineering of Nanomaterials: Application in Antibacterial Activity, Bio-Analyte Detection and Environmental Remediation". Thesis, 2023. https://etd.iisc.ac.in/handle/2005/6071.
Pełny tekst źródłaLee, Lun-Ming, i 李倫銘. "Elemental Conducting Two-Dimensional Germanene and Stanene Grown on Molybdenum Disulfides for Device Applications". Thesis, 2019. http://ndltd.ncl.edu.tw/handle/269y36.
Pełny tekst źródła國立東華大學
材料科學與工程學系
107
In this thesis, large-area molybdenum disulfides (MoS2) are prepared by sulfurizing the pre-deposited transition metal films. We have demonstrated 2D tin (stanene) and germanium (germanene) film growths on MoS2/sapphire substrates by using the thermal evaporation. In the first section, the elemental 2D material of germanene was grown on the MoS2 surface at 400 °C. Observed from the cross-sectional high-resolution transmission electron microscopy image (HRTEM), the layer separation between germanene is 3.3 Å, which is consistent with the value extracted from the XRD curve. Next, we find out that the other 2D material stanene can also be grown on the MoS2 surface at 150°C and room temperature. The stanene layer separation is 2.9 Å. The value is consistent with the value extracted from the XRD curve. We also attempted to grow stanene on sapphire substrates at room temperature. The results show that stanene can also be formed on sapphire substrates at room temperature. Finally, we use stanene as the contact metals for MoS2. Four different contact metal electrodes of these samples were prepared. They are Au/Ti, stanene, Au/stanene, and Au/Al/stanene respectively. By using the transmission line model (TLM), the device using Au/Al/stanene as contact metal shows lower specific contact resistance (ρc) value compare with the device using Au/Ti as electrodes. The values of specific contact resistance (ρc) decreased from 6.63×103 Ω·cm2 to 4.04 Ω·cm2. Totally descending three orders of magnitude. We have demonstrated that the conductive 2D material stanene is a promising candidate as a contact metal for 2D devices. This significant achievement is so impressive, we succeed in stepping across this milestone and look forward to the 2D materials will have a great development potential in the future.