Gotowa bibliografia na temat „TWITTER ANALYTICS”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „TWITTER ANALYTICS”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "TWITTER ANALYTICS"
Goonetilleke, Oshini, Timos Sellis, Xiuzhen Zhang i Saket Sathe. "Twitter analytics". ACM SIGKDD Explorations Newsletter 16, nr 1 (25.09.2014): 11–20. http://dx.doi.org/10.1145/2674026.2674029.
Pełny tekst źródłaHoeber, Orland, Larena Hoeber, Maha El Meseery, Kenneth Odoh i Radhika Gopi. "Visual Twitter Analytics (Vista)". Online Information Review 40, nr 1 (8.02.2016): 25–41. http://dx.doi.org/10.1108/oir-02-2015-0067.
Pełny tekst źródłaGukanesh, A. V., G. Karthick Kumar i K. Karthik Raja Kumar N. Saranya. "Twitter Data Analytics – Sentiment Analysis of An Election". International Journal of Trend in Scientific Research and Development Volume-2, Issue-3 (30.04.2018): 1600–1603. http://dx.doi.org/10.31142/ijtsrd11457.
Pełny tekst źródłaZhang, Min, Feng-Ru Sheu i Yin Zhang. "Understanding Twitter use by major LIS professional organisations in the United States". Journal of Information Science 44, nr 2 (27.01.2017): 165–83. http://dx.doi.org/10.1177/0165551516687701.
Pełny tekst źródłaKota, Venkata Krishna, Venkateswarlu Naik B i Vasudeva Rao Prasadula. "Smart City Service Monitoring Using Twitter Analytics". International Journal of Scientific and Research Publications (IJSRP) 9, nr 8 (24.08.2019): p92136. http://dx.doi.org/10.29322/ijsrp.9.08.2019.p92136.
Pełny tekst źródłaRazis, Gerasimos, Georgios Theofilou i Ioannis Anagnostopoulos. "Latent Twitter Image Information for Social Analytics". Information 12, nr 2 (21.01.2021): 49. http://dx.doi.org/10.3390/info12020049.
Pełny tekst źródłaAlathur, Sreejith, i Rajesh Pai. "Social Media Games: Insights from Twitter Analytics". International Journal of Web Based Communities 16, nr 1 (2020): 1. http://dx.doi.org/10.1504/ijwbc.2020.10026216.
Pełny tekst źródłaPai, Rajesh R., i Sreejith Alathur. "Social media games: insights from Twitter analytics". International Journal of Web Based Communities 16, nr 1 (2020): 34. http://dx.doi.org/10.1504/ijwbc.2020.105127.
Pełny tekst źródłaPai, Rajesh R., i Sreejith Alathur. "Assessing mobile health applications with twitter analytics". International Journal of Medical Informatics 113 (maj 2018): 72–84. http://dx.doi.org/10.1016/j.ijmedinf.2018.02.016.
Pełny tekst źródłaDrescher, Larissa S., Carola Grebitus i Jutta Roosen. "Exploring Food Consumption Trends on Twitter with Social Media Analytics: The Example of #Veganuary". EuroChoices 22, nr 2 (sierpień 2023): 45–52. http://dx.doi.org/10.1111/1746-692x.12403.
Pełny tekst źródłaRozprawy doktorskie na temat "TWITTER ANALYTICS"
Leis, Machín Angela 1974. "Studying depression through big data analytics on Twitter". Doctoral thesis, TDX (Tesis Doctorals en Xarxa), 2021. http://hdl.handle.net/10803/671365.
Pełny tekst źródłaCarvalho, Eder José de. "Visual analytics of topics in twitter in connection with political debates". Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-11092017-140904/.
Pełny tekst źródłaMídias sociais como o Twitter e o Facebook atuam, em diversas situações, como canais de iniciativas que buscam ampliar as ações de cidadania. Por outro lado, certas ações e manifestações na mídia convencional por parte de instituições governamentais, ou de jornalistas e políticos como deputados e senadores, tendem a repercutir nas mídias sociais. Como resultado, gerase uma enorme quantidade de dados em formato textual que podem ser muito informativos sobre ações e políticas governamentais. No entanto, o público-alvo continua carente de boas ferramentas que ajudem a levantar, correlacionar e interpretar as informações potencialmente úteis associadas a esses textos. Neste contexto, este trabalho apresenta dois sistemas orientados à análise de dados governamentais e de mídias sociais. Um dos sistemas introduz uma nova visualização, baseada na metáfora do rio, para análise temporal da evolução de tópicos no Twitter em conexão com debates políticos. Para tanto, o problema foi inicialmente modelado como um problema de clusterização e um método de segmentação de texto independente de domínio foi adaptado para associar (por clusterização) tweets com discursos parlamentares. Uma versão do algorimo MONIC para detecção de transições entre agrupamentos foi empregada para rastrear a evolução temporal de debates (ou agrupamentos) e produzir um conjunto de agrupamentos com informação de tempo. O outro sistema, chamado ATR-Vis, combina técnicas de visualização com estratégias de recuperação ativa para envolver o usuário na recuperação de tweets relacionados a debates políticos e associa-os ao debate correspondente. O arcabouço proposto introduz quatro estratégias de recuperação ativa que utilizam informação estrutural do Twitter melhorando a acurácia do processo de recuperação e simultaneamente minimizando o número de pedidos de rotulação apresentados ao usuário. Avaliações por meio de casos de uso e experimentos quantitativos, assim como uma análise qualitativa conduzida com três especialistas ilustram a efetividade do ATR-Vis na recuperação de tweets relevantes. Para a avaliação, foram coletados dois conjuntos de tweets relacionados a debates parlamentares ocorridos no Brasil e no Canadá, e outro formado por um conjunto de notícias que receberam grande atenção da mídia no período da coleta.
Haraldsson, Daniel. "Marknadsföring på Twitter : Vilken dag och tidpunkt är optimal?" Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-11517.
Pełny tekst źródłaMahendiran, Aravindan. "Automated Vocabulary Building for Characterizing and Forecasting Elections using Social Media Analytics". Thesis, Virginia Tech, 2014. http://hdl.handle.net/10919/25430.
Pełny tekst źródłaMaster of Science
Carlos, Marcelo Aparecido. "Análise de surtos de doenças transmitidas pelo mosquito Aedes aegypti utilizando Big-Data Analytics e mensagens do Twitter". reponame:Repositório Institucional da UFABC, 2017.
Znajdź pełny tekst źródłaDissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Engenharia da Informação, 2017.
O uso do big-data aliado a técnicas de mineração de textos vem crescendo a cada ano em diversas áreas da ciência, especialmente na área da saúde, na medicina de precisão, em prontuários eletrônicos entre outros. A motivação desse trabalho parte da hipótese de que é possível usar conceitos de big-data para analisar grandes quantidades de dados sobre as doenças da dengue, chikungunya e zika vírus, para monitorar e antecipar informações sobre possíveis surtos dessas doenças. Entretanto, a análise de grandes volumes de dados - inerente ao estudo em big-data - possui desafios, particularmente, devido à falta de escalabilidade dos algoritmos e à complexidade do gerenciamento dos mais diferentes tipos e estruturas dos dados envolvidos. O principal objetivo desse trabalho é apresentar uma implementação de técnicas de mineração de textos, em especial, aqueles oriundos de redes sociais, tais como o Twitter, aliadas à abordagem de análises em big-data e aprendizado de máquina, para monitorar a incidência das doenças da dengue, chikungunya e zika vírus, todas transmitidas pelo mosquito Aedes aegypti. Os resultados obtidos indicam que a implementação realizada, baseado na junção dos algoritmos de aprendizado de máquina K-Means e SVM, teve rendimento satisfatório para a amostra utilizada em comparação aos registros do Ministério da Saúde, indicando, assim, um potencial para utilização do seu propósito. Observa-se que a principal vantagem das análises em big-data está relacionada à possibilidade de empregar dados não estruturados os quais são obtidos em redes sociais, sites de e-commerce, dentre outros. Nesse sentido, dados que antes pareciam, de certo modo, de pouca importância, passam a ter grande potencial e relevância.
The use of the big-data allied to techniques of text mining has been growing every year in several areas of science, especially in the area of health, precision medicine, electronic medical records among others. The motivation from this work, is based on the hypothesis that it is possible to use big-data concepts to analyze large volumes of data about the dengue disease, chikungunya and zika virus, to monitor and anticipate information about possible outbreaks for diseases. However, the analysis of large volumes of data - inherent in the big-data study - has some challenges, particularly due to the lack of scalability of the algorithms and the complexity of managing the most different types and structures of the data involved. The main objective of this work is to present the implementation of text mining techniques - especially from social networks such as Twitter - allies to the approach of big-data and machine-learned analyzes to monitor the incidence of Dengue, Chikungunya and Zika virus, all transmissions by the mosquito Aedes aegypti. The results obtained indicate that the implementation made based on the combination of machine learning algorithms, K-Means and SVM, got a satisfactory yield for a sample used, if compared the publications of the records of the Ministry of Health, thus indicating a potential for the purpose. It is observed that a main advantage of the big-data analyzes is related to the possibility of employing unstructured data, e-commerce sites, among others. In this sense, data that once seemed, in a way, of little importance, have great potential and relevance.
Bigsby, Kristina Gavin. "From hashtags to Heismans: social media and networks in college football recruiting". Diss., University of Iowa, 2018. https://ir.uiowa.edu/etd/6371.
Pełny tekst źródłaGröbe, Mathias. "Konzeption und Entwicklung eines automatisierten Workflows zur geovisuellen Analyse von georeferenzierten Textdaten(strömen) / Microblogging Content". Master's thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-210672.
Pełny tekst źródłaThis Master's Thesis deals with the conception and exemplary implementation of a workflow for georeferenced Microblogging Content. Data from Twitter is used as an example and as a starting point to think about how to build that workflow. In the field of Data Mining and Text Mining, there was found a whole range of useful software modules that already exist. Mostly, they only need to get lined up to a process pipeline using appropriate preferences. Although a logical order can be defined, further adjustments according to the research question and the data are required. The process is supported by different forms of visualizations such as histograms, tag clouds and maps. This way new knowledge can be discovered and the options for the preparation can be improved. This way of knowledge discovery is already known as Geovisual Analytics. After a review of multiple existing software tools, the programming language R is used to implement the workflow as this language is optimized for solving statistical problems. Finally, the workflow has been tested using data from Twitter and Flickr
Dehghan, Ehsan. "Networked discursive alliances: Antagonism, agonism, and the dynamics of discursive struggles in the Australian Twittersphere". Thesis, Queensland University of Technology, 2020. https://eprints.qut.edu.au/174604/1/Ehsan_Dehghan_Thesis.pdf.
Pełny tekst źródłaVondrášek, Petr. "Komerční využití sociálních sítí". Master's thesis, Vysoká škola ekonomická v Praze, 2013. http://www.nusl.cz/ntk/nusl-197442.
Pełny tekst źródłaBjörnham, Alexandra. "Agile communication for a greener world". Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-122117.
Pełny tekst źródłaKsiążki na temat "TWITTER ANALYTICS"
Kumar, Shamanth, Fred Morstatter i Huan Liu. Twitter Data Analytics. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-9372-3.
Pełny tekst źródłaLiu, Huan, Shamanth Kumar i Fred Morstatter. Twitter Data Analytics. Springer London, Limited, 2013.
Znajdź pełny tekst źródłaTwitter Data Analytics. Springer-Verlag New York Inc., 2013.
Znajdź pełny tekst źródłaLiu, Huan, Shamanth Kumar i Fred Morstatter. Twitter Data Analytics. Springer, 2013.
Znajdź pełny tekst źródłaChatterjee, Siddhartha, i Michal Krystyanczuk. Python Social Media Analytics: Analyze and visualize data from Twitter, YouTube, GitHub, and more. Packt Publishing - ebooks Account, 2017.
Znajdź pełny tekst źródłaSzpankowski, Wojciech, i Philippe Jacquet. Analytic Pattern Matching: From DNA to Twitter. Cambridge University Press, 2015.
Znajdź pełny tekst źródłaSzpankowski, Wojciech, i Philippe Jacquet. Analytic Pattern Matching: From DNA to Twitter. Cambridge University Press, 2015.
Znajdź pełny tekst źródłaSzpankowski, Wojciech, i Philippe Jacquet. Analytic Pattern Matching: From DNA to Twitter. Cambridge University Press, 2015.
Znajdź pełny tekst źródłaCzęści książek na temat "TWITTER ANALYTICS"
Kumar, Shamanth, Fred Morstatter i Huan Liu. "Crawling Twitter Data". W Twitter Data Analytics, 5–22. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-9372-3_2.
Pełny tekst źródłaKumar, Shamanth, Fred Morstatter i Huan Liu. "Storing Twitter Data". W Twitter Data Analytics, 23–33. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-9372-3_3.
Pełny tekst źródłaKumar, Shamanth, Fred Morstatter i Huan Liu. "Analyzing Twitter Data". W Twitter Data Analytics, 35–48. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-9372-3_4.
Pełny tekst źródłaKumar, Shamanth, Fred Morstatter i Huan Liu. "Visualizing Twitter Data". W Twitter Data Analytics, 49–69. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-9372-3_5.
Pełny tekst źródłaKumar, Shamanth, Fred Morstatter i Huan Liu. "Introduction". W Twitter Data Analytics, 1–3. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-9372-3_1.
Pełny tekst źródłaGarg, Yogesh, i Niladri Chatterjee. "Sentiment Analysis of Twitter Feeds". W Big Data Analytics, 33–52. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-13820-6_3.
Pełny tekst źródłaPradyumn, Mudit, Akshat Kapoor i Nasseh Tabrizi. "Big Data Analytics on Twitter". W Big Data – BigData 2018, 326–33. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94301-5_26.
Pełny tekst źródłaMehndiratta, Pulkit, Shelly Sachdeva, Pankaj Sachdeva i Yatin Sehgal. "Elections Again, Twitter May Help!!! A Large Scale Study for Predicting Election Results Using Twitter". W Big Data Analytics, 133–44. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-13820-6_11.
Pełny tekst źródłaBhargava, Mudit, Pulkit Mehndiratta i Krishna Asawa. "Stylometric Analysis for Authorship Attribution on Twitter". W Big Data Analytics, 37–47. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-03689-2_3.
Pełny tekst źródłaHaughton, Dominique, Mark-David McLaughlin, Kevin Mentzer i Changan Zhang. "Can We Predict Oscars from Twitter and Movie Review Data?" W Movie Analytics, 41–54. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-09426-7_6.
Pełny tekst źródłaStreszczenia konferencji na temat "TWITTER ANALYTICS"
Dhamankar, Robin, i Krishna Gade. "Realtime analytics @ twitter". W the fifth international workshop. New York, New York, USA: ACM Press, 2013. http://dx.doi.org/10.1145/2516588.2516593.
Pełny tekst źródłaPerera, Rohan D. W., S. Anand, K. P. Subbalakshmi i R. Chandramouli. "Twitter analytics: Architecture, tools and analysis". W MILCOM 2010 - 2010 IEEE Military Communications Conference. IEEE, 2010. http://dx.doi.org/10.1109/milcom.2010.5680493.
Pełny tekst źródłaFeng, Yue, Hossein Fani, Ebrahim Bagheri i Jelena Jovanovic. "Lexical Semantic Relatedness for Twitter Analytics". W 2015 IEEE 27th International Conference on Tools with Artificial Intelligence (ICTAI). IEEE, 2015. http://dx.doi.org/10.1109/ictai.2015.41.
Pełny tekst źródłaVanitha, P. S., i Sreejith Alathur. "E-learning services: Insights from Twitter Analytics". W 2019 International Conference on Advances in Computing and Communication Engineering (ICACCE). IEEE, 2019. http://dx.doi.org/10.1109/icacce46606.2019.9080001.
Pełny tekst źródłaGruzd, Anatoliy, i Nadia Conroy. "Learning Analytics Dashboard for Teaching with Twitter". W Hawaii International Conference on System Sciences. Hawaii International Conference on System Sciences, 2020. http://dx.doi.org/10.24251/hicss.2020.330.
Pełny tekst źródłaShah, Syed Attique, Sadok Ben Yahia, Keegan McBride, Akhtar Jamil i Dirk Draheim. "Twitter Streaming Data Analytics for Disaster Alerts". W 2021 2nd International Informatics and Software Engineering Conference (IISEC). IEEE, 2021. http://dx.doi.org/10.1109/iisec54230.2021.9672370.
Pełny tekst źródłaPerez Cabañero, Carmen, Enrique Bigne, Carla Ruiz Mafe i Antonio Carlos Cuenca. "Sentiment Analysis of Twitter in Tourism Destinations". W CARMA 2020 - 3rd International Conference on Advanced Research Methods and Analytics. Valencia: Universitat Politècnica de València, 2020. http://dx.doi.org/10.4995/carma2020.2020.11621.
Pełny tekst źródłaDussoye, Hirikesh, i Zarine Cadersaib. "Sentiment analytics framework integrating Twitter and Odoo ERP". W 2017 International Conference on Infocom Technologies and Unmanned Systems (Trends and Future Directions) (ICTUS). IEEE, 2017. http://dx.doi.org/10.1109/ictus.2017.8285994.
Pełny tekst źródłaAziz, Khadija, Dounia Zaidouni i Mostafa Bellafkih. "Social Network Analytics: Natural Disaster Analysis Through Twitter". W 2019 Third International Conference on Intelligent Computing in Data Sciences (ICDS). IEEE, 2019. http://dx.doi.org/10.1109/icds47004.2019.8942337.
Pełny tekst źródłaAlzahrani, Sabah M. "Big Data Analytics Tools: Twitter API and Spark". W 2021 International Conference of Women in Data Science at Taif University (WiDSTaif ). IEEE, 2021. http://dx.doi.org/10.1109/widstaif52235.2021.9430205.
Pełny tekst źródła