Spis treści
Gotowa bibliografia na temat „Twisted elliptic genus”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Twisted elliptic genus”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Twisted elliptic genus"
Eguchi, Tohru, i Kazuhiro Hikami. "Note on twisted elliptic genus of K3 surface". Physics Letters B 694, nr 4-5 (styczeń 2011): 446–55. http://dx.doi.org/10.1016/j.physletb.2010.10.017.
Pełny tekst źródłaEguchi, Tohru, i Kazuhiro Hikami. "Twisted Elliptic Genus for K3 and Borcherds Product". Letters in Mathematical Physics 102, nr 2 (26.05.2012): 203–22. http://dx.doi.org/10.1007/s11005-012-0569-2.
Pełny tekst źródłaEager, Richard, i Ingmar Saberi. "Holomorphic field theories and Calabi–Yau algebras". International Journal of Modern Physics A 34, nr 16 (10.06.2019): 1950071. http://dx.doi.org/10.1142/s0217751x19500714.
Pełny tekst źródłaYADAV, REKHA, SHAILJA TRIPATHI, DILESHWAR PRASAD, SHUBHAM JAISWAL, VIRENDRA K. MADHUKAR i PRIYANKA AGNIHOTRI. "Lectotypification of names in Duthiea (Poaceae)". Phytotaxa 494, nr 1 (31.03.2021): 173–76. http://dx.doi.org/10.11646/phytotaxa.494.1.15.
Pełny tekst źródłaBruinier, Jan Hendrik, Stephan Ehlen i Tonghai Yang. "CM values of higher automorphic Green functions for orthogonal groups". Inventiones mathematicae 225, nr 3 (17.03.2021): 693–785. http://dx.doi.org/10.1007/s00222-021-01038-0.
Pełny tekst źródłaShnidman, Ari, i Ariel Weiss. "Rank growth of elliptic curves over 𝑁-th root extensions". Transactions of the American Mathematical Society, Series B 10, nr 16 (14.04.2023): 482–506. http://dx.doi.org/10.1090/btran/149.
Pełny tekst źródłaZHANG, JIAWEI, ZHEN WANG, SUQING ZHUO, YAHUI GAO, XUESONG LI, JUN ZHANG, LIN SUN, JUNRONG LIANG, LANG LI i CHANGPING CHEN. "Scoliolyra elliptica gen. et sp. nov. (Bacillariophyceae), a new marine genus from sandy beach in Southern China". Phytotaxa 472, nr 1 (18.11.2020): 1–12. http://dx.doi.org/10.11646/phytotaxa.472.1.1.
Pełny tekst źródłaBruin, Peter, i Filip Najman. "Hyperelliptic modular curves and isogenies of elliptic curves over quadratic fields". LMS Journal of Computation and Mathematics 18, nr 1 (2015): 578–602. http://dx.doi.org/10.1112/s1461157015000157.
Pełny tekst źródłaAshok, Sujay K., i Jan Troost. "A twisted non-compact elliptic genus". Journal of High Energy Physics 2011, nr 3 (marzec 2011). http://dx.doi.org/10.1007/jhep03(2011)067.
Pełny tekst źródłaDuan, Zhihao, Kimyeong Lee, June Nahmgoong i Xin Wang. "Twisted 6d (2, 0) SCFTs on a circle". Journal of High Energy Physics 2021, nr 7 (lipiec 2021). http://dx.doi.org/10.1007/jhep07(2021)179.
Pełny tekst źródłaRozprawy doktorskie na temat "Twisted elliptic genus"
Arène, Christophe. "Géométrie et arithmétique explicites des variétés abéliennes et applications à la cryptographie". Thesis, Aix-Marseille 2, 2011. http://www.theses.fr/2011AIX22069/document.
Pełny tekst źródłaThe main objects we study in this PhD thesis are the equations describing the group morphism on an abelian variety, embedded in a projective space, and their applications in cryptograhy. We denote by g its dimension and k its field of definition. This thesis is built in two parts. The first one is concerned by the study of Edwards curves, a model for elliptic curves having a cyclic subgroup of k-rational points of order 4, known in cryptography for the efficiency of their addition law and the fact that it can be defined for any couple of k-rational points (k-complete addition law). We give the corresponding geometric interpretation and deduce explicit formulae to calculate the reduced Tate pairing on twisted Edwards curves, whose efficiency compete with currently used elliptic models. The part ends with the generation, specific to pairing computation, of Edwards curves with today's cryptographic standard sizes. In the second part, we are interested in the notion of completeness introduced above. This property is cryptographically significant, indeed it permits to avoid physical attacks as side channel attacks, on elliptic -- or hyperelliptic -- curves cryptosystems. A preceeding work of Lange and Ruppert, based on cohomology of line bundles, brings a theoretic approach of addition laws. We present three important results: first of all we generalize a result of Bosma and Lenstra by proving that the group morphism can not be described by less than g+1 addition laws on the algebraic closure of k. Next, we prove that if the absolute Galois group of k is infinite, then any abelian variety can be projectively embedded together with a k-complete addition law. Moreover, a cryptographic use of abelian varieties restricting us to the dimension one and two cases, we prove that such a law exists for their classical projective embedding. Finally, we develop an algorithm, based on the theory of theta functions, computing this addition law in P^15 on the Jacobian of a genus two curve given in Rosenhain form. It is now included in AVIsogenies, a Magma package
Costello, Craig. "Fast formulas for computing cryptographic pairings". Thesis, Queensland University of Technology, 2012. https://eprints.qut.edu.au/61037/1/Craig_Costello_Thesis.pdf.
Pełny tekst źródłaChattopadhyaya, Aradhita. "Applications of Moonshine Symmetry in String Theory". Thesis, 2019. https://etd.iisc.ac.in/handle/2005/5001.
Pełny tekst źródłaCzęści książek na temat "Twisted elliptic genus"
Cornelissen, Gunther, i Norbert Peyerimhoff. "Spectra, Group Representations and Twisted Laplacians". W Twisted Isospectrality, Homological Wideness, and Isometry, 17–30. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-27704-7_3.
Pełny tekst źródła