Artykuły w czasopismach na temat „TurboID”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „TurboID”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Cho, Kelvin F., Tess C. Branon, Sanjana Rajeev, Tanya Svinkina, Namrata D. Udeshi, Themis Thoudam, Chulhwan Kwak i in. "Split-TurboID enables contact-dependent proximity labeling in cells". Proceedings of the National Academy of Sciences 117, nr 22 (18.05.2020): 12143–54. http://dx.doi.org/10.1073/pnas.1919528117.
Pełny tekst źródłaCho, Kelvin F., Tess C. Branon, Namrata D. Udeshi, Samuel A. Myers, Steven A. Carr i Alice Y. Ting. "Proximity labeling in mammalian cells with TurboID and split-TurboID". Nature Protocols 15, nr 12 (2.11.2020): 3971–99. http://dx.doi.org/10.1038/s41596-020-0399-0.
Pełny tekst źródłaMay, Danielle G., Kelsey L. Scott, Alexandre R. Campos i Kyle J. Roux. "Comparative Application of BioID and TurboID for Protein-Proximity Biotinylation". Cells 9, nr 5 (25.04.2020): 1070. http://dx.doi.org/10.3390/cells9051070.
Pełny tekst źródłaDoerr, Allison. "Proximity labeling with TurboID". Nature Methods 15, nr 10 (październik 2018): 764. http://dx.doi.org/10.1038/s41592-018-0158-0.
Pełny tekst źródłaGarloff, Vera, i Ignacio Rubio. "Schneller, weiter, TurboID – Modulation einer übereifrigen Biotin-Ligase". BIOspektrum 29, nr 3 (maj 2023): 273–75. http://dx.doi.org/10.1007/s12268-023-1943-6.
Pełny tekst źródłaMakhsatova, S. A., A. B. Kurmanbay, I. A. Akhmetollayev i A. T. Kulyyassov. "ASSEMBLING THE TURBOID-CONTAINING PLASMID CONSTRUCT FOR INVESTIGATING THE IN VIVO PROTEIN-PROTEIN INTERACTIONS". Eurasian Journal of Applied Biotechnology, nr 3S (12.09.2024): 47. http://dx.doi.org/10.11134/btp.3s.2024.35.
Pełny tekst źródłaTakano, Tetsuya. "Comprehensive identification of molecules at synapses and non-synaptic cell-adhesion structure". Impact 2023, nr 3 (21.09.2023): 46–48. http://dx.doi.org/10.21820/23987073.2023.3.46.
Pełny tekst źródłaRabinovich-Ernst, Orna, Clinton Bradfield, SungHwan Yoon, Anthony Armstrong, Samuel Katz, Aleksandra Nita-Lazar i Iain Fraser. "TurboID biotin-tagging mass spectrometry identifies specific caspase-11-associated proteins regulating non-canonical inflammasome activation". Journal of Immunology 206, nr 1_Supplement (1.05.2021): 15.06. http://dx.doi.org/10.4049/jimmunol.206.supp.15.06.
Pełny tekst źródłaKim, Han Byeol, i Kwang-eun Kim. "Precision proteomics with TurboID: mapping the suborganelle landscape". Korean Journal of Physiology & Pharmacology 28, nr 6 (1.11.2024): 495–501. http://dx.doi.org/10.4196/kjpp.2024.28.6.495.
Pełny tekst źródłaGurung, Sadeechya. "Abstract 998: Extracellular proximity labeling (ePL) as a tool to identify protein-protein interactions in the tumor microenvironment". Cancer Research 82, nr 12_Supplement (15.06.2022): 998. http://dx.doi.org/10.1158/1538-7445.am2022-998.
Pełny tekst źródłaTeplova, Anastasia D., Marina V. Serebryakova, Raisa A. Galiullina, Nina V. Chichkova i Andrey B. Vartapetian. "Identification of Phytaspase Interactors via the Proximity-Dependent Biotin-Based Identification Approach". International Journal of Molecular Sciences 22, nr 23 (4.12.2021): 13123. http://dx.doi.org/10.3390/ijms222313123.
Pełny tekst źródłaHolzer, Elisabeth, Cornelia Rumpf-Kienzl, Sebastian Falk i Alexander Dammermann. "A modified TurboID approach identifies tissue-specific centriolar components in C. elegans". PLOS Genetics 18, nr 4 (20.04.2022): e1010150. http://dx.doi.org/10.1371/journal.pgen.1010150.
Pełny tekst źródłaBranon, Tess C., Justin A. Bosch, Ariana D. Sanchez, Namrata D. Udeshi, Tanya Svinkina, Steven A. Carr, Jessica L. Feldman, Norbert Perrimon i Alice Y. Ting. "Efficient proximity labeling in living cells and organisms with TurboID". Nature Biotechnology 36, nr 9 (październik 2018): 880–87. http://dx.doi.org/10.1038/nbt.4201.
Pełny tekst źródłaPeeney, David, Sadeechya Gurung, Josh Rich, Sasha Coates-Park, Yueqin Liu i William G. Stetler-Stevenson. "Abstract 2348: Mapping the interactome of matrisome targets using extracellular proximity labeling (ePL)". Cancer Research 83, nr 7_Supplement (4.04.2023): 2348. http://dx.doi.org/10.1158/1538-7445.am2023-2348.
Pełny tekst źródłaArtan, Murat, Stephen Barratt, Sean M. Flynn, Farida Begum, Mark Skehel, Armel Nicolas i Mario de Bono. "Interactome analysis of Caenorhabditis elegans synapses by TurboID-based proximity labeling". Journal of Biological Chemistry 297, nr 3 (wrzesień 2021): 101094. http://dx.doi.org/10.1016/j.jbc.2021.101094.
Pełny tekst źródłaSmirnova, Evgeniya V., Tatiana V. Rakitina, Rustam H. Ziganshin, George A. Saratov, Georgij P. Arapidi, Alexey A. Belogurov i Anna A. Kudriaeva. "Identification of Myelin Basic Protein Proximity Interactome Using TurboID Labeling Proteomics". Cells 12, nr 6 (20.03.2023): 944. http://dx.doi.org/10.3390/cells12060944.
Pełny tekst źródłaFujimoto, Shintaro, Shinya Tashiro i Yasushi Tamura. "Complementation Assay Using Fusion of Split-GFP and TurboID (CsFiND) Enables Simultaneous Visualization and Proximity Labeling of Organelle Contact Sites in Yeast". Contact 6 (styczeń 2023): 251525642311536. http://dx.doi.org/10.1177/25152564231153621.
Pełny tekst źródłaArtan, Murat, Stephen Barratt, Sean M. Flynn, Farida Begum, Mark Skehel, Armel Nicolas i Mario de Bono. "Correction: Interactome analysis of Caenorhabditis elegans synapses by TurboID-based proximity labeling". Journal of Biological Chemistry 298, nr 6 (czerwiec 2022): 102081. http://dx.doi.org/10.1016/j.jbc.2022.102081.
Pełny tekst źródłaBranon, Tess C., Justin A. Bosch, Ariana D. Sanchez, Namrata D. Udeshi, Tanya Svinkina, Steven A. Carr, Jessica L. Feldman, Norbert Perrimon i Alice Y. Ting. "Author Correction: Efficient proximity labeling in living cells and organisms with TurboID". Nature Biotechnology 38, nr 1 (20.11.2019): 108. http://dx.doi.org/10.1038/s41587-019-0355-0.
Pełny tekst źródłaWang, Chenyu, i Laidong Yu. "TurboID Proximity Labeling of a Protocadherin Protein to Characterize Interacting Protein Complex". American Journal of Molecular Biology 13, nr 04 (2023): 213–26. http://dx.doi.org/10.4236/ajmb.2023.134015.
Pełny tekst źródłaWei, Xia-fei, Shan Li i Jie-li Hu. "A TurboID-based proximity labelling approach for identifying the DNA-binding proteins". STAR Protocols 4, nr 1 (marzec 2023): 102139. http://dx.doi.org/10.1016/j.xpro.2023.102139.
Pełny tekst źródłaSchaan Profes, Marcos, Araven Tiroumalechetty, Neel Patel, Stephanie S. Lauar, Simone Sidoli i Peri T. Kurshan. "Characterization of the intracellular neurexin interactome by in vivo proximity ligation suggests its involvement in presynaptic actin assembly". PLOS Biology 22, nr 1 (22.01.2024): e3002466. http://dx.doi.org/10.1371/journal.pbio.3002466.
Pełny tekst źródłaKanzler, Charlotte R., Michael Donohue, Megan E. Dowdle i Michael D. Sheets. "TurboID functions as an efficient biotin ligase for BioID applications in Xenopus embryos". Developmental Biology 492 (grudzień 2022): 133–38. http://dx.doi.org/10.1016/j.ydbio.2022.10.005.
Pełny tekst źródłaHolzer, Elisabeth, Cornelia Rumpf-Kienzl, Sebastian Falk i Alexander Dammermann. "Correction: A modified TurboID approach identifies tissue-specific centriolar components in C. elegans". PLOS Genetics 19, nr 2 (13.02.2023): e1010645. http://dx.doi.org/10.1371/journal.pgen.1010645.
Pełny tekst źródłaLarochelle, Marc, Danny Bergeron, Bruno Arcand i François Bachand. "Proximity-dependent biotinylation mediated by TurboID to identify protein–protein interaction networks in yeast". Journal of Cell Science 132, nr 11 (7.05.2019): jcs232249. http://dx.doi.org/10.1242/jcs.232249.
Pełny tekst źródłaGottschalk, Robert, Leah Wachsmuth, Dingyin Tao, Sandeep Rana, Tino Sanchez, Yi-Han Lin, Ganesha Rai, Juan Marugan i Mark Henderson. "Abstract 2657: SNAP-TurboID: A Proximity-based Intracellular Tool for Small Molecule Target Identification". Journal of Biological Chemistry 299, nr 3 (2023): S156. http://dx.doi.org/10.1016/j.jbc.2023.103345.
Pełny tekst źródłaNascari, David, Ryan Eghlimi, Angad Beniwal, Drake Alton, John Fryer i Nhan L. Tran. "Abstract 5562: Altered tumor microenvironment in animal model of concomitant GBM and Alzheimer's pathology". Cancer Research 84, nr 6_Supplement (22.03.2024): 5562. http://dx.doi.org/10.1158/1538-7445.am2024-5562.
Pełny tekst źródłaKalkan, Batuhan, Can Ozcan, Enes Cicek i Ceyda Acilan. "Nek2A Prevents Centrosome Clustering and Induces Cell Death in Cancer Cells Via KIF2C Interaction". JCO Global Oncology 10, Supplement_1 (lipiec 2024): 133. http://dx.doi.org/10.1200/go-24-10800.
Pełny tekst źródłaLi, Haorong, Ashley M. Frankenfield, Ryan Houston, Shiori Sekine i Ling Hao. "Thiol-Cleavable Biotin for Chemical and Enzymatic Biotinylation and Its Application to Mitochondrial TurboID Proteomics". Journal of the American Society for Mass Spectrometry 32, nr 9 (28.04.2021): 2358–65. http://dx.doi.org/10.1021/jasms.1c00079.
Pełny tekst źródłaYan, Biao, Ting Zeng, Xiaoshan Liu, Yuanyuan Guo, Hongguang Chen, Shuang Guo i Wu Liu. "Study on the interaction protein of transcription factor Smad3 based on TurboID proximity labeling technology". Genomics 116, nr 3 (maj 2024): 110839. http://dx.doi.org/10.1016/j.ygeno.2024.110839.
Pełny tekst źródłaChevalier, Benoît, Nesrine Baatallah, Matthieu Najm, Solène Castanier, Vincent Jung, Iwona Pranke, Anita Golec i in. "Differential CFTR-Interactome Proximity Labeling Procedures Identify Enrichment in Multiple SLC Transporters". International Journal of Molecular Sciences 23, nr 16 (11.08.2022): 8937. http://dx.doi.org/10.3390/ijms23168937.
Pełny tekst źródłaCiesla, Jessica, Kai-Lieh Huang, Eric J. Wagner i Joshua Munger. "A UL26-PIAS1 complex antagonizes anti-viral gene expression during Human Cytomegalovirus infection". PLOS Pathogens 20, nr 5 (20.05.2024): e1012058. http://dx.doi.org/10.1371/journal.ppat.1012058.
Pełny tekst źródłaShioya, Ryouhei, Kohdai Yamada, Kohki Kido, Hirotaka Takahashi, Akira Nozawa, Hidetaka Kosako i Tatsuya Sawasaki. "A simple method for labeling proteins and antibodies with biotin using the proximity biotinylation enzyme TurboID". Biochemical and Biophysical Research Communications 592 (luty 2022): 54–59. http://dx.doi.org/10.1016/j.bbrc.2021.12.109.
Pełny tekst źródłaHu, Yaofang, Changsheng Jiang, Yueqiao Zhao, Hua Cao, Jingping Ren, Wei Zeng, Mengjia Zhang, Yongtao Li, Qigai He i Wentao Li. "TurboID screening of ApxI toxin interactants identifies host proteins involved in Actinobacillus pleuropneumoniae-induced apoptosis of immortalized porcine alveolar macrophages". Veterinary Research 54, nr 1 (20.07.2023). http://dx.doi.org/10.1186/s13567-023-01194-6.
Pełny tekst źródłaWang, Bo, Fan Yang, Wuqian Wang, Fei Zhao i Xiaofang Sun. "TurboID-mediated proximity labeling technologies to identify virus co-receptors". Frontiers in Cellular and Infection Microbiology 14 (27.06.2024). http://dx.doi.org/10.3389/fcimb.2024.1371837.
Pełny tekst źródłaMair, Andrea, Shou-Ling Xu, Tess C. Branon, Alice Y. Ting i Dominique C. Bergmann. "Proximity labeling of protein complexes and cell-type-specific organellar proteomes in Arabidopsis enabled by TurboID". eLife 8 (19.09.2019). http://dx.doi.org/10.7554/elife.47864.
Pełny tekst źródłaShafraz, Omer, Carolyn Marie Orduno Davis i Sanjeevi Sivasankar. "Light Activated BioID (LAB): an optically activated proximity labeling system to study protein-protein interactions". Journal of Cell Science, 27.09.2023. http://dx.doi.org/10.1242/jcs.261430.
Pełny tekst źródłaKushner, Jared S., Aaron Rodriques, Sergey Zakharov, Alexander Katchman, STAVROS FANOURAKIS i Steven Marx. "Abstract 12045: Mapping the CaV1.2 Interactome in Rat Heart in vivo". Circulation 146, Suppl_1 (8.11.2022). http://dx.doi.org/10.1161/circ.146.suppl_1.12045.
Pełny tekst źródłaZhang, Bo, Yuanbing Zhang i Ji-Long Liu. "Highly effective proximate labeling in Drosophila". G3 Genes|Genomes|Genetics 11, nr 5 (16.03.2021). http://dx.doi.org/10.1093/g3journal/jkab077.
Pełny tekst źródłaSu, Yanting, Yuanyuan Guo, Jieyu Guo, Ting Zeng, Ting Wang i Wu Liu. "Study of FOXO1-interacting proteins using TurboID-based proximity labeling technology". BMC Genomics 24, nr 1 (24.03.2023). http://dx.doi.org/10.1186/s12864-023-09238-z.
Pełny tekst źródłaSzczesniak, Laura M., Caden G. Bonzerato i Richard J. H. Wojcikiewicz. "Identification of the Bok Interactome Using Proximity Labeling". Frontiers in Cell and Developmental Biology 9 (31.05.2021). http://dx.doi.org/10.3389/fcell.2021.689951.
Pełny tekst źródłaLau, Chun Sing, Adam Dowle, Gavin H. Thomas, Philipp Girr i Luke C. M. Mackinder. "A phase-separated CO2-fixing pyrenoid proteome determined by TurboID in Chlamydomonas reinhardtii". Plant Cell, 17.05.2023. http://dx.doi.org/10.1093/plcell/koad131.
Pełny tekst źródłaLi, Xiaofang, Yanping Wei, Qili Fei, Guilin Fu, Yu Gan i Chuanlin Shi. "TurboID‐mediated proximity labeling for screening interacting proteins of FIP37 in Arabidopsis". Plant Direct 7, nr 12 (grudzień 2023). http://dx.doi.org/10.1002/pld3.555.
Pełny tekst źródłaYheskel, Matanel, Simone Sidoli i Julie Secombe. "Proximity labeling reveals a new in vivo network of interactors for the histone demethylase KDM5". Epigenetics & Chromatin 16, nr 1 (18.02.2023). http://dx.doi.org/10.1186/s13072-023-00481-y.
Pełny tekst źródłaHaidar-Ahmad, Nathaline, Kyle Tomaro, Mathieu Lavallée-Adam i François-Xavier Campbell-Valois. "The promiscuous biotin ligase TurboID reveals the proxisome of the T3SS chaperone IpgC in Shigella flexneri". mSphere, 31.10.2024. http://dx.doi.org/10.1128/msphere.00553-24.
Pełny tekst źródłaZhang, Kaixin, Yinyin Li, Tengbo Huang i Ziwei Li. "Potential application of TurboID-based proximity labeling in studying the protein interaction network in plant response to abiotic stress". Frontiers in Plant Science 13 (16.08.2022). http://dx.doi.org/10.3389/fpls.2022.974598.
Pełny tekst źródłaZhang, Qianshen, Zhiyan Wen, Xin Zhang, Jiajie She, Xiaoling Wang, Zongyu Gao, Ruiqi Wang i in. "RETICULON-LIKE PROTEIN B2 is a pro-viral factor co-opted for the biogenesis of viral replication organelles in plants". Plant Cell, 22.05.2023. http://dx.doi.org/10.1093/plcell/koad146.
Pełny tekst źródłaPark, Sohyeon, Xiaorong Wang, Yajin Mo, Sicheng Zhang, Xiangpeng Li, Katie C. Fong, Clinton Yu i in. "Proximity Labeling Expansion Microscopy (PL-ExM) Evaluates Interactome Labeling Techniques". Journal of Materials Chemistry B, 2024. http://dx.doi.org/10.1039/d4tb00516c.
Pełny tekst źródłaChen, Rui, Ningxia Zhang, Yubin Zhou i Ji Jing. "Optical Sensors and Actuators for Probing Proximity-Dependent Biotinylation in Living Cells". Frontiers in Cellular Neuroscience 16 (16.02.2022). http://dx.doi.org/10.3389/fncel.2022.801644.
Pełny tekst źródłaKreis, Elena, Katharina König, Melissa Misir, Justus Niemeyer, Frederik Sommer i Michael Schroda. "TurboID reveals the proxiomes of Chlamydomonas proteins involved in thylakoid biogenesis and stress response". Plant Physiology, 13.06.2023. http://dx.doi.org/10.1093/plphys/kiad335.
Pełny tekst źródła