Gotowa bibliografia na temat „Turbine engines materials”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Turbine engines materials”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Turbine engines materials"
Pyatov, I. S., O. V. Shiboev, V. G. Buzinov, A. R. Makarov, A. V. Kostyukov, V. N. Posedko, L. A. Finkelberg i A. N. Kostyuchenkov. "Carbon materials for parts of gas-turbine engines and internal combustion engines, problems and prospects". Izvestiya MGTU MAMI 8, nr 4-1 (20.02.2014): 55–60. http://dx.doi.org/10.17816/2074-0530-67679.
Pełny tekst źródłaZaretsky, E. V. "Ceramic Bearings for Use in Gas Turbine Engines". Journal of Engineering for Gas Turbines and Power 111, nr 1 (1.01.1989): 146–54. http://dx.doi.org/10.1115/1.3240213.
Pełny tekst źródłaKharlina, Ekaterina. "LOW-EMISSION COMBUSTION CHAMBERS AND COOLING SYSTEMS". Perm National Research Polytechnic University Aerospace Engineering Bulletin, nr 70 (2022): 29–40. http://dx.doi.org/10.15593/2224-9982/2022.70.03.
Pełny tekst źródłaDanko, Gene A. "By Leaps and Bounds: The Realization of Jet Propulsion through Innovative Materials and Design". Key Engineering Materials 380 (marzec 2008): 135–46. http://dx.doi.org/10.4028/www.scientific.net/kem.380.135.
Pełny tekst źródłaZhong, Yan, Liangyu Chen, Xinyu Wang, Lei Zhao, Haoxi Bai, Bing Han, Shengzhen Cheng i Jingbo Luo. "Angle-Regulating Rule of Guide Vanes of Variable Geometry Turbine Adjusting Mechanism". Applied Sciences 13, nr 11 (23.05.2023): 6357. http://dx.doi.org/10.3390/app13116357.
Pełny tekst źródłaOPARA, Tadeusz. "History and future of turbine aircraft engines". Combustion Engines 127, nr 4 (1.11.2006): 3–18. http://dx.doi.org/10.19206/ce-117335.
Pełny tekst źródłaMeetham, G. W. "High temperature materials in gas turbine engines". Materials & Design 9, nr 4 (lipiec 1988): 213–19. http://dx.doi.org/10.1016/0261-3069(88)90033-7.
Pełny tekst źródłaEasley, M. L., i J. R. Smyth. "Ceramic Gas Turbine Technology Development". Journal of Engineering for Gas Turbines and Power 117, nr 4 (1.10.1995): 783–91. http://dx.doi.org/10.1115/1.2815465.
Pełny tekst źródłaSadowski, Tomasz, i Przemysław Golewski. "The Analysis of Heat Transfer and Thermal Stresses in Thermal Barrier Coatings under Exploitation". Defect and Diffusion Forum 326-328 (kwiecień 2012): 530–35. http://dx.doi.org/10.4028/www.scientific.net/ddf.326-328.530.
Pełny tekst źródłaManiam, Kranthi Kumar, i Shiladitya Paul. "Progress in Novel Electrodeposited Bond Coats for Thermal Barrier Coating Systems". Materials 14, nr 15 (28.07.2021): 4214. http://dx.doi.org/10.3390/ma14154214.
Pełny tekst źródłaRozprawy doktorskie na temat "Turbine engines materials"
Temple, Benjamin John. "Advancements of Gas Turbine Engines and Materials". OpenSIUC, 2020. https://opensiuc.lib.siu.edu/theses/2763.
Pełny tekst źródłaCornwell, Michael. "Causes of Combustion Instabilities with Passive and Active Methods of Control for practical application to Gas Turbine Engines". University of Cincinnati / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1307323433.
Pełny tekst źródłaRoth, Richard. "Materials substitution in aircraft gas turbine engine applications". Thesis, Massachusetts Institute of Technology, 1992. http://hdl.handle.net/1721.1/13112.
Pełny tekst źródłaSaari, Henry M. J. "The processing of gas turbine engine hot section materials through directional solidification". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape4/PQDD_0018/MQ48472.pdf.
Pełny tekst źródłaSaari, Henry M. J. Carleton University Dissertation Engineering Mechanical and Aerospace. "The Processing of gas turbine engine hot section materials through directional solidification". Ottawa, 1999.
Znajdź pełny tekst źródłaEveritt, Stewart. "Developments in advanced high temperature disc and blade materials for aero-engine gas turbine applications". Thesis, University of Southampton, 2012. https://eprints.soton.ac.uk/348897/.
Pełny tekst źródłaGhulam, Mohamad. "Characterization of Swirling Flow in a Gas Turbine Fuel Injector". University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1563877023803877.
Pełny tekst źródłaDsouza, Jason Brian. "Numerical Analysis of a Flameless Swirl Stabilized Cavity Combustor for Gas Turbine Engine Applications". University of Cincinnati / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1627663015527799.
Pełny tekst źródłaSahay, Prateek. "Development of a Robotic Cell for Removal of Tabs from Jet Engine Turbine Blade". University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1574417686354007.
Pełny tekst źródłaAull, Mark J. "Comparison of Fault Detection Strategies on a Low Bypass Turbofan Engine Model". University of Cincinnati / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1321368833.
Pełny tekst źródłaKsiążki na temat "Turbine engines materials"
E, Helms Harold, red. Ceramic applications in turbine engines. Park Ridge, N.J., U.S.A: Noyes Publications, 1986.
Znajdź pełny tekst źródłaThe Impact of advanced materials on small turbine engines. [Warrendale, Pa: Society of Automotive Engineers, 1991.
Znajdź pełny tekst źródłaP, Millan P., i United States. National Aeronautics and Space Administration., red. Oxide-dispersion-strengthened turbine blades: Materials for advanced turbine engines, project completion report, project 4. [Phoenix, Ariz.]: Garrett Turbine Engine Co., 1987.
Znajdź pełny tekst źródłaP, Millan P., i United States. National Aeronautics and Space Administration., red. Oxide-dispersion-strengthened turbine blades: Materials for advanced turbine engines, project completion report, project 4. [Phoenix, Ariz.]: Garrett Turbine Engine Co., 1987.
Znajdź pełny tekst źródłaWallace, William. Methods for crack growth testing in gas turbine engine disc materials. Ottawa: National Aeronautical Establishment, 1987.
Znajdź pełny tekst źródłaMiller, Robert A. Thermal barrier coatings for gas turbine and diesel engines. [Washington, D.C.]: NASA, 1990.
Znajdź pełny tekst źródłaJ, Brindley W., Bailey M. Murray i United States. National Aeronautics and Space Administration., red. Thermal barrier coatings for gas turbine and diesel engines. [Washington, D.C.]: NASA, 1990.
Znajdź pełny tekst źródłaMelvin, Freling, Friedrich L. A i Lewis Research Center, red. Materials for Advanced Turbine Engines (MATE): Project 4--erosion resistant compressor airfoil coating. [Cleveland, Ohio]: National Aeronautics and Space Administration, 1987.
Znajdź pełny tekst źródłaM, Baldwin Richard, Schick Wilbur R, United States. National Aeronautics and Space Administration. i United States. Army Aviation Systems Command., red. Spray automated balancing of rotors: Methods and materials. [Washington, D.C.]: National Aeronautics and Space Administration, 1988.
Znajdź pełny tekst źródłaCenter, Lewis Research, i United States. National Aeronautics and Space Administration. Scientific and Technical Information Branch, red. Turbine engine hot section technology 1986: Proceedings of a conference. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1986.
Znajdź pełny tekst źródłaCzęści książek na temat "Turbine engines materials"
Navrotsky, V., Y. Nozhnitsky, Y. Shekhtman, N. Boutourlinova, Y. Fedina i E. Chyiaston. "Designing Gas Turbine Ceramic Elements". W 4th International Symposium on Ceramic Materials and Components for Engines, 1035–41. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2882-7_115.
Pełny tekst źródłaButler, E. G., i M. H. Lewis. "Prospects for Ceramics in Airborne Gas Turbine Engines". W 4th International Symposium on Ceramic Materials and Components for Engines, 32–49. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2882-7_3.
Pełny tekst źródłaWatanabe, Keiichiro, Tadao Ozawa, Yoshito Kobayashi i Eito Matsuo. "Development of Silicon Nitride Radial Turbine Rotors". W 4th International Symposium on Ceramic Materials and Components for Engines, 1009–16. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2882-7_112.
Pełny tekst źródłaNozhnitsky, Y., L. Smirnov, S. Egorov, A. Markov i V. Sakovich. "Experimental Investigation of Ceramic Materials and Turbine Rotor Components Strength". W 4th International Symposium on Ceramic Materials and Components for Engines, 1025–34. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2882-7_114.
Pełny tekst źródłaRuss, Stephan M., Reji John i Craig P. Przybyla. "Characterization and Simulation of Time-Dependent Response of Structural Materials for Aero Structures and Turbine Engines". W Challenges in Mechanics of Time Dependent Materials, Volume 2, 83–91. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63393-0_14.
Pełny tekst źródłaGostic, William. "Application of Materials and Process Modeling to the Design, Development, and Sustainment of Advanced Turbine Engines". W Superalloys 2012, 1–12. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118516430.ch1.
Pełny tekst źródłaBunker, Ron S. "The Role of Materials and Manufacturing Technologies as Enablers in Gas Turbine Cooling for High Performance Engines". W Ceramic Transactions Series, 1–20. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2009. http://dx.doi.org/10.1002/9780470528976.ch1.
Pełny tekst źródłaShmotin, Yuriy, Alexander Logunov, Denis Danilov i Igor Leshchenko. "Development of Economically Doped Heat-Resistant Nickel Single-Crystal Superalloys for Blades of Perspective Gas Turbine Engines". W Proceedings of the 8th Pacific Rim International Congress on Advanced Materials and Processing, 327–36. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-48764-9_40.
Pełny tekst źródłaStraub, Douglas L., i Geo A. Richards. "Effects of Alternative Fuels and Engine Cycles on Turbine Cooling". W Turbine Aerodynamics, Heat Transfer, Materials, and Mechanics, 655–73. Reston, VA: American Institute of Aeronautics and Astronautics, Inc., 2014. http://dx.doi.org/10.2514/5.9781624102660.0655.0674.
Pełny tekst źródłaHessler, U., i B. Domes. "LCF-Failure Analysis of an Aero-Engine Turbine Wheel". W Low Cycle Fatigue and Elasto-Plastic Behaviour of Materials—3, 664–70. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2860-5_107.
Pełny tekst źródłaStreszczenia konferencji na temat "Turbine engines materials"
GRAY, DAVID. "Materials technology for small gas turbine engines". W 23rd Joint Propulsion Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1987. http://dx.doi.org/10.2514/6.1987-2144.
Pełny tekst źródłaLittles, Jerrol W., Robert J. Morris, Richard Pettit, David M. Harmon, Michael F. Savage i Sharayu Tulpule. "Materials and Structures Prognosis for Gas Turbine Engines". W ASME Turbo Expo 2006: Power for Land, Sea, and Air. ASMEDC, 2006. http://dx.doi.org/10.1115/gt2006-91203.
Pełny tekst źródłaKool, G. A. "Current and Future Materials in Advanced Gas Turbine Engines". W ASME 1994 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1994. http://dx.doi.org/10.1115/94-gt-475.
Pełny tekst źródłaMason, John L. "The Impact of Advanced Materials on Small Turbine Engines". W SAE Aerospace Atlantic Conference and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1991. http://dx.doi.org/10.4271/911207.
Pełny tekst źródłaJOHNSON, A., i P. WRIGHT. "Application of advanced materials to aircraft gas turbine engines". W 26th Joint Propulsion Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1990. http://dx.doi.org/10.2514/6.1990-2281.
Pełny tekst źródłaMurugan, Muthuvel, Anindya Ghoshal, Fei Xu, Ming-Chen Hsu, Yuri Bazilevs, Luis Bravo i Kevin Kerner. "Articulating Turbine Rotor Blade Concept for Improved Off-Design Performance of Gas Turbine Engines". W ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/smasis2016-9045.
Pełny tekst źródłaShifler, David, Donald Hoffman, John Hartranft, Carl Grala, Louis Aprigliano i Dan Groghan. "USN Marine Gas Turbine Development Initiatives: Part I—Advanced High Temperature Materials". W ASME Turbo Expo 2010: Power for Land, Sea, and Air. ASMEDC, 2010. http://dx.doi.org/10.1115/gt2010-23596.
Pełny tekst źródłaBirdsall, James C., William J. Davies, Richard Dixon, Matthew J. Ivary i Gary A. Wigell. "Potential Application of Composite Materials to Future Gas Turbine Engines". W 1988 American Control Conference. IEEE, 1988. http://dx.doi.org/10.23919/acc.1988.4790028.
Pełny tekst źródłaMurugan, Muthuvel, Anindya Ghoshal, Michael Walock i Daniel Bonis. "Intelligent Propulsion Materials for Rotorcraft Gas Turbine Engine Component Applications". W Vertical Flight Society 75th Annual Forum & Technology Display. The Vertical Flight Society, 2019. http://dx.doi.org/10.4050/f-0075-2019-14683.
Pełny tekst źródłaBattison, J. Mark. "Mechanical Attachment of Ceramics to Metals in Gas Turbine Engines". W ASME 1993 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/93-gt-434.
Pełny tekst źródłaRaporty organizacyjne na temat "Turbine engines materials"
Arsenlis, Athanasios, i John Allison. Integrated Computational Materials Engineering (ICME) Tools for Optimizing Strength of Forged Al-Li Turbine Blades for Aircraft Engines Final Report CRADA No. TC02238.0. Office of Scientific and Technical Information (OSTI), wrzesień 2017. http://dx.doi.org/10.2172/1425447.
Pełny tekst źródłaArsenlis, A., i J. Allison. Integrated Computational Materials Engineering (ICME) Tools for Optimizing Strength of Forged Al-Li Turbine Blades for Aircraft Engines Final Report CRADA No. TC02238.0. Office of Scientific and Technical Information (OSTI), marzec 2021. http://dx.doi.org/10.2172/1774219.
Pełny tekst źródłaTaylor. L51755 Development and Testing of an Advanced Technology Vibration Transmission. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), lipiec 1996. http://dx.doi.org/10.55274/r0010124.
Pełny tekst źródłaFortener, William G., i Susan S. Saliba. Nonmetals Test and Evaluation. Delivery Order 0003: Fuel System Materials Compatibility Testing of Fuel Additives for Reducing the Amount of Small Particulate in Turbine Engine Exhaust. Fort Belvoir, VA: Defense Technical Information Center, październik 2005. http://dx.doi.org/10.21236/ada448662.
Pełny tekst źródła