Gotowa bibliografia na temat „Turbine blade development”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Turbine blade development”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Turbine blade development"
Han, Je-Chin, i Srinath Ekkad. "Recent Development in Turbine Blade Film Cooling". International Journal of Rotating Machinery 7, nr 1 (2001): 21–40. http://dx.doi.org/10.1155/s1023621x01000033.
Pełny tekst źródłaAlipour, Ramin, Roozbeh Alipour, Seyed Saeid Rahimian Koloor, Michal Petrů i Seyed Alireza Ghazanfari. "On the Performance of Small-Scale Horizontal Axis Tidal Current Turbines. Part 1: One Single Turbine". Sustainability 12, nr 15 (24.07.2020): 5985. http://dx.doi.org/10.3390/su12155985.
Pełny tekst źródłaAnderson, Benjamin, Pietro Bortolotti i Nick Johnson. "Development of an open-source segmented blade design tool". Journal of Physics: Conference Series 2265, nr 3 (1.05.2022): 032023. http://dx.doi.org/10.1088/1742-6596/2265/3/032023.
Pełny tekst źródłaPandey, Rohit. "Development and Optimization of Wind Turbine Blade Design for Enhanced Efficiency". Mathematical Statistician and Engineering Applications 70, nr 1 (31.01.2021): 519–26. http://dx.doi.org/10.17762/msea.v70i1.2505.
Pełny tekst źródłaFinnegan, William, Priya Dasan Keeryadath, Rónán Ó Coistealbha, Tomas Flanagan, Michael Flanagan i Jamie Goggins. "Development of a numerical model of a novel leading edge protection component for wind turbine blades". Wind Energy Science 5, nr 4 (13.11.2020): 1567–77. http://dx.doi.org/10.5194/wes-5-1567-2020.
Pełny tekst źródłaBoedi, Silvy Dollorossa, Josephine Sundah, Meidy Kawulur i Franklin Bawano. "Design and Construction of Kinetic Turbine External Hinged Blade as A Picohydro Scale Power Plant". International Journal of Innovative Technology and Exploring Engineering 12, nr 1 (30.12.2022): 43–47. http://dx.doi.org/10.35940/ijitee.a9367.1212122.
Pełny tekst źródłaRantererung, Corvis L., Titus Tandiseno i Mika Mallisa. "Development of Four Nossel Cross Flow Turbine". Journal of Physics: Conference Series 2394, nr 1 (1.12.2022): 012029. http://dx.doi.org/10.1088/1742-6596/2394/1/012029.
Pełny tekst źródłaZawadzki, Karol, Wojciech Śmiechowicz, Małgorzata Stępień, Anna Baszczyńska i Michał Tarkowski. "Influence of the Solidity Ratio on the Small Wind Turbine Aerodynamics". E3S Web of Conferences 242 (2021): 03006. http://dx.doi.org/10.1051/e3sconf/202124203006.
Pełny tekst źródłaXu, Liang, Zineng Sun, Qicheng Ruan, Lei Xi, Jianmin Gao i Yunlong Li. "Development Trend of Cooling Technology for Turbine Blades at Super-High Temperature of above 2000 K". Energies 16, nr 2 (5.01.2023): 668. http://dx.doi.org/10.3390/en16020668.
Pełny tekst źródłaSutrisno, Sutrisno, Deendarlianto Deendarlianto, Indarto Indarto, Sigit Iswahyudi, Muhammad Agung Bramantya i Setyawan Bekti Wibowo. "Performances and Stall Delays of Three Dimensional Wind Turbine Blade Plate-Models with Helicopter-Like Propeller Blade Tips". Modern Applied Science 11, nr 10 (30.09.2017): 189. http://dx.doi.org/10.5539/mas.v11n10p189.
Pełny tekst źródłaRozprawy doktorskie na temat "Turbine blade development"
Jousselin, Olivier. "Development of blade tip timing techniques in turbo machinery". Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/development-of-blade-tip-timing-techniques-in-turbo-machinery(da682144-7009-4cdc-8f52-ff7cd0cf1cf1).html.
Pełny tekst źródłaCaraballo, Torrealba Edgar Jesus. "Modeling and Control Development for a Turbine Blade Testing Facility". Miami University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=miami1574434292454319.
Pełny tekst źródłaGorle, Jagan Mohan Rao. "Development of Circulation Controlled Blade Pitching Laws for Low-Velocity Darrieus Turbine". Thesis, Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique, 2015. http://www.theses.fr/2015ESMA0021/document.
Pełny tekst źródłaWith key applications in marine renewable energy. the vertical axis water turbine can use current or tidal energy in an eco-friendly manner. However, it is difficult to reconcile optimal performance of hydrokinetic turbines and compliance wilh the aquatic environment as the main drawback of the turbines is the formation of non-linear flow structures caused by the unsteady movement of the blades. Eddies in the flow are advected and can interact with other blades, which leads to a reduction in power output. To limit this phenomenon, the turbines operate at high speeds, which are likely to reduce the shaft power. High speeds of rotational so forbid the passage of aquatic animais, and are the cause of a suction effect on the sediments.The objective of this thesis work is twofold. First, it aims to develop a blade pitch control to get the flow adjusted around the blade profile at any given flow configuration by incorporatin.g the profile's motion with respect to incident flow. Such a system intends to achieve the objective of operating at reduced speeds without vortical releases, which should allow achieving a high torque without causing damage to the environment.This thesis work is mainly carried out in three phases. ln the first phase, the irrotational flow over an arbitrary profile is formulated using conforma] mapping. Prospective potential flow application on the basis of Couchet theory (1976) is involved in the development of a control law that decides the blade pitching in a constant circulation framework. In the second phase, a numerical validation of the developed analytical work is presented using CFD to examine how the theoretical fomulation can be effectively applied to Darricus turbines. In the final phase, two prototypes are developed, one is classical Darrieus turbine with fixed blades, and other is the turbine with pitching blades for experimental measurements of performance as well as flow fields(by PIV) in order to validate the computational results
Bai, Qian. "Development of a new process to reduce distortion in gas turbine blade forging". Thesis, Imperial College London, 2012. http://hdl.handle.net/10044/1/39131.
Pełny tekst źródłaCigeroglu, Ender. "Development of microslip friction models and forced response prediction methods for frictionally constrained turbine blades". Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1181856489.
Pełny tekst źródłaGuo, Shengmin. "Heat transfer and aerodynamic studies of a nozzle guide vane and the development of new heat transfer gauges". Thesis, University of Oxford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.389217.
Pełny tekst źródłaJiang, Zhengyi. "Design, development and testing of an automated system for measuring wall thicknesses in turbine blades with cooling channels". Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/design-development-and-testing-of-an-automated-system-for-measuring-wall-thicknesses-in-turbine-blades-with-cooling-channels(895ac153-e310-40e2-87c6-4e40654c9d5d).html.
Pełny tekst źródłaLynch, Stephen P. "The Effect of Endwall Contouring On Boundary Layer Development in a Turbine Blade Passage". Diss., Virginia Tech, 2011. http://hdl.handle.net/10919/77202.
Pełny tekst źródłaPh. D.
Sahay, Prateek. "Development of a Robotic Cell for Removal of Tabs from Jet Engine Turbine Blade". University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1574417686354007.
Pełny tekst źródłaALINEJAD, FARHAD. "Development of advanced criteria for blade root design and optimization". Doctoral thesis, Politecnico di Torino, 2018. http://hdl.handle.net/11583/2711560.
Pełny tekst źródłaKsiążki na temat "Turbine blade development"
A, Cyr M., Strange R. R i United States. National Aeronautics and Space Administration., red. Turbine blade and vane heat flux sensor development phase 2. [Washington, DC]: National Aeronautics and Space Administration, 1985.
Znajdź pełny tekst źródłaA, Cyr M., Strange R. R i United States. National Aeronautics and Space Administration, red. Turbine blade and vane heat flux sensor development phase 2. [Washington, DC]: National Aeronautics and Space Administration, 1985.
Znajdź pełny tekst źródłaBarnard, Mark C. S. Pistons to blades: Small gas turbine developments by the Rover Company. Derby: Rolls-Royce Heritage Trust, 2003.
Znajdź pełny tekst źródłaLane, Christopher. The Development of a 2D Ultrasonic Array Inspection for Single Crystal Turbine Blades. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02517-9.
Pełny tekst źródłaChandrashekar, S. Technology & innovation in China: A case study of single crystal superalloy development for aircraft turbine blades. Bangalore: International Strategic & Security Studies Programme, National Institute of Advanced Studies, 2011.
Znajdź pełny tekst źródłaAlloy Design Challenge: Development of Low Density Superalloys for Turbine Blade Applications. Independently Published, 2020.
Znajdź pełny tekst źródłaLane, Christopher. Development of a 2D Ultrasonic Array Inspection for Single Crystal Turbine Blades. Springer, 2013.
Znajdź pełny tekst źródłaLane, Christopher. The Development of a 2D Ultrasonic Array Inspection for Single Crystal Turbine Blades. Springer, 2016.
Znajdź pełny tekst źródłaLane, Christopher. The Development of a 2D Ultrasonic Array Inspection for Single Crystal Turbine Blades. Springer, 2013.
Znajdź pełny tekst źródłaCzęści książek na temat "Turbine blade development"
Abo-Serie, Essam, i Elif Oran. "Flow Simulation of a New Horizontal Axis Wind Turbine with Multiple Blades for Low Wind Speed". W Springer Proceedings in Energy, 93–106. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-30960-1_10.
Pełny tekst źródłaŠabić, Muharem, Edvin Šimić i Said Šabić. "Analysis and Choice of Gas Turbine Blade". W New Technologies, Development and Application VI, 29–35. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-34721-4_4.
Pełny tekst źródłaAmano, Ryoichi S. "Aerodynamic Behavior of Rear-Tubercle Horizontal Axis Wind Turbine Blade". W Sustainable Development for Energy, Power, and Propulsion, 545–62. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5667-8_22.
Pełny tekst źródłaElatife, Khalid, i Abdellatif El Marjani. "Blade Profile Effect on the Impulse Radial Turbine Performances for OWC Wave Energy Converter". W International Conference on Advanced Intelligent Systems for Sustainable Development, 149–61. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-35245-4_14.
Pełny tekst źródłade Oliveira, A. R., A. B. da Rocha, E. da T. Marcelino, R. I. Lopes, J. V. de M. Rodrigues i R. N. C. Duarte. "Development of a Wind Turbine Blade with Dedicated Profiles by Schmitz’s Optimum Dimensioning Systematization". W Mechanisms and Machine Science, 544–59. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99272-3_38.
Pełny tekst źródłaRame, J., P. Caron, D. Locq, O. Lavigne, L. Mataveli Suave, V. Jaquet, M. Perrut, J. Delautre, A. Saboundji i J. Y. Guedou. "Development of AGAT, a Third-Generation Nickel-Based Superalloy for Single Crystal Turbine Blade Applications". W Superalloys 2020, 31–40. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51834-9_3.
Pełny tekst źródłaPotluri, Sri Shanti, Shyam Kishore, R. Isai Thamizh i B. V. A. Patnaik. "Development of Reduced Order Strain Model for Life Assessment of a Gas Turbine Rotor Blade". W Lecture Notes in Mechanical Engineering, 97–106. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4779-9_8.
Pełny tekst źródłaJoy Mathavan, J., i Amar Patnaik. "Development and Characterization of Polyamide Fiber Composite Filled with Fly Ash for Wind Turbine Blade". W Lecture Notes in Mechanical Engineering, 131–39. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9931-3_14.
Pełny tekst źródłaNgala, G. M., i M. Shuwa. "Development of a Micro Horizontal Axis Wind Turbine Blade for the Semi-Arid Region of Nigeria". W Innovative Renewable Energy, 681–91. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-76221-6_75.
Pełny tekst źródłaKlötzer, Christian, Martin-Christoph Wanner, Wilko Flügge i Lars Greitsch. "Implementation of Innovative Manufacturing Technologies in Foundries for Large-Volume Components". W Annals of Scientific Society for Assembly, Handling and Industrial Robotics 2021, 229–40. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-74032-0_19.
Pełny tekst źródłaStreszczenia konferencji na temat "Turbine blade development"
Scrinzi, Erica, Iacopo Giovannetti, Nuo Sheng i Luc Leblanc. "Development of New Abradable/Abrasive Sealing Systems for Clearance Control in Gas Turbines". W ASME 2013 Turbine Blade Tip Symposium. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/tbts2013-2065.
Pełny tekst źródłaSUAREZ, E., i H. PRZIREMBEL. "Pyrometry for turbine blade development". W 24th Joint Propulsion Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1988. http://dx.doi.org/10.2514/6.1988-3036.
Pełny tekst źródłaWagner, L. F., i J. H. Griffin. "Blade Vibration With Nonlinear Tip Constraint: Model Development". W ASME 1989 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1989. http://dx.doi.org/10.1115/89-gt-293.
Pełny tekst źródłaBright, Eric, Roger Burleson, Steve A. Dynan i William T. Collins. "NT164 Silicon Nitride Gas-Turbine Engine Turbine Blade Manufacturing Development". W ASME 1995 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/95-gt-074.
Pełny tekst źródłaGebhard, Susanne, Tanja Wobst, Dan Roth-Fagaraseanu i Matthew Hancock. "Advanced Coating Systems for Future Shroudless Turbines". W ASME 2013 Turbine Blade Tip Symposium. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/tbts2013-2017.
Pełny tekst źródłaWheeler, Andrew P. S., i Richard D. Sandberg. "Direct Numerical Simulations of a Transonic Tip Flow With Free-Stream Disturbances". W ASME 2013 Turbine Blade Tip Symposium. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/tbts2013-2037.
Pełny tekst źródłaCurtis, E. M., H. P. Hodson, M. R. Banieghbal, J. D. Denton, R. J. Howell i N. W. Harvey. "Development of Blade Profiles for Low Pressure Turbine Applications". W ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/96-gt-358.
Pełny tekst źródłaRajendran, Nanthini, Bhamidi Prasad i Y. V. S. S. Sanyasiraju. "Development of Turbine Blade Profiles Using Iterative Inverse Design Methodology". W ASME 2017 Gas Turbine India Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/gtindia2017-4553.
Pełny tekst źródłaLandry, C., P. K. Dubois, N. Courtois, F. Charron, M. Picard i J. S. Plante. "Development of an Inside-Out Ceramic Turbine". W ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/gt2016-57041.
Pełny tekst źródłaPechlivanoglou, G., G. Weinzierl, I. T. Masmanidis, C. N. Nayeri, T. P. Philippidis i C. O. Paschereit. "Utilization of Modern Large Scale HAWT Blade Design Techniques for the Development of Small HAWT Blades". W ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/gt2014-25309.
Pełny tekst źródłaRaporty organizacyjne na temat "Turbine blade development"
Wright, David M., i DOE Project Officer - Keith Bennett. Low Speed Technology for Small Turbine Development Reaction Injection Molded 7.5 Meter Wind Turbine Blade. Office of Scientific and Technical Information (OSTI), lipiec 2007. http://dx.doi.org/10.2172/921599.
Pełny tekst źródłaGogolewski, R. P., i B. J. Cunningham. Terminal ballistic experiments for the development of turbine engine blade containment technology. Office of Scientific and Technical Information (OSTI), styczeń 1995. http://dx.doi.org/10.2172/87317.
Pełny tekst źródłaEly, George Ray, Dennis P. Roach, Thomas M. Rice, Garrett Dean Nelson i Joshua Paquette. Development and Evaluation of a Drone-Deployed Wind Turbine Blade Nondestructive Inspection System. Office of Scientific and Technical Information (OSTI), marzec 2018. http://dx.doi.org/10.2172/1528806.
Pełny tekst źródłaHughes, Scott. Wind Turbine Blade Test Definition of the DeWind DW90 Rotor Blade: Cooperative Research and Development Final Report, CRADA Number CRD-09-326. Office of Scientific and Technical Information (OSTI), maj 2012. http://dx.doi.org/10.2172/1040941.
Pełny tekst źródłaFrancis A. Di Bella. Development of a Wave Energy -Responsive Self-Actuated Blade Articulation Mechanism for an OWC Turbine. Office of Scientific and Technical Information (OSTI), czerwiec 2010. http://dx.doi.org/10.2172/1054197.
Pełny tekst źródłaHughes, Scott. NREL Wind Turbine Blade Structural Testing of the Modular Wind Energy MW45 Blade: Cooperative Research and Development Final Report, CRADA Number CRD-09-354. Office of Scientific and Technical Information (OSTI), maj 2012. http://dx.doi.org/10.2172/1040946.
Pełny tekst źródłaAmarendra K. Rai. DEVELOPMENT OF PROTECTIVE COATINGS FOR SINGLE CRYSTAL TURBINE BLADES. Office of Scientific and Technical Information (OSTI), grudzień 2006. http://dx.doi.org/10.2172/895828.
Pełny tekst źródłaSnowberg, David, Derek Berry, Dana Swan, Zhang Mingfu, Steve Nolet, Douglas Adams, Johnathan Goodsell, Dayakar Penumadu i Aaron Stebner. IACMI Project 4.2: Thermoplastic Composite Development for Wind Turbine Blades. Office of Scientific and Technical Information (OSTI), grudzień 2021. http://dx.doi.org/10.2172/1834393.
Pełny tekst źródłaMascarenas, David. Development of Event-Based Data Acquisition for Acoustic Emission Monitoring of the Structural Integrity of Wind Turbine Blades. Office of Scientific and Technical Information (OSTI), lipiec 2023. http://dx.doi.org/10.2172/1993187.
Pełny tekst źródłaWind Turbine Blade Fatigue Analysis for Development of Predictive Life Models: Cooperative Research and Development Final Report, CRADA Number CRD-17-00696. Office of Scientific and Technical Information (OSTI), wrzesień 2020. http://dx.doi.org/10.2172/1665832.
Pełny tekst źródła