Gotowa bibliografia na temat „Turbidity”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Turbidity”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Turbidity"
Cattaneo, A., N. Babonneau, G. Ratzov, G. Dan-Unterseh, K. Yelles, R. Bracène, B. Mercier de Lépinay, A. Boudiaf i J. Déverchère. "Searching for the seafloor signature of the 21 May 2003 Boumerdès earthquake offshore central Algeria". Natural Hazards and Earth System Sciences 12, nr 7 (10.07.2012): 2159–72. http://dx.doi.org/10.5194/nhess-12-2159-2012.
Pełny tekst źródłaPatton, J. R., C. Goldfinger, A. E. Morey, C. Romsos, B. Black i Y. Djadjadihardja. "Seismoturbidite record as preserved at core sites at the Cascadia and Sumatra–Andaman subduction zones". Natural Hazards and Earth System Sciences 13, nr 4 (4.04.2013): 833–67. http://dx.doi.org/10.5194/nhess-13-833-2013.
Pełny tekst źródłaNaruse, Hajime, i Kento Nakao. "Inverse modeling of turbidity currents using an artificial neural network approach: verification for field application". Earth Surface Dynamics 9, nr 5 (3.09.2021): 1091–109. http://dx.doi.org/10.5194/esurf-9-1091-2021.
Pełny tekst źródłaOno, Kenya, Hajime Naruse, Qifeng Yao, Zhirong Cai, Sojiro Fukuda i Miwa Yokokawa. "Multiple scours and upward fining caused by hydraulic jumps: implications for the recognition of cyclic steps in the deepwater stratigraphic record". Journal of Sedimentary Research 93, nr 4 (1.04.2023): 243–55. http://dx.doi.org/10.2110/jsr.2021.142.
Pełny tekst źródłaVan Daele, Maarten, Peter J. Haeussler, Robert C. Witter, Nore Praet i Marc De Batist. "The Sedimentary Record of the 2018 Anchorage Earthquake in Eklutna Lake, Alaska: Calibrating the Lacustrine Seismograph". Seismological Research Letters 91, nr 1 (20.11.2019): 126–41. http://dx.doi.org/10.1785/0220190204.
Pełny tekst źródłaHo, Viet Luan, Robert M. Dorrell, Gareth M. Keevil, Robert E. Thomas, Alan D. Burns, Jaco H. Baas i William D. McCaffrey. "Dynamics and deposition of sediment-bearing multi-pulsed flows and geological implication". Journal of Sedimentary Research 89, nr 11 (26.11.2019): 1127–39. http://dx.doi.org/10.2110/jsr.2019.62.
Pełny tekst źródłaHidayat, Jafron Wasiq, Karyadi Baskoro i Rini Sopiany. "Struktur Komunitas Mollusca Bentik Berbasis Kekeruhan Di Perairan Pelabuhan Tanjung Emas Semarang". Bioma : Berkala Ilmiah Biologi 10, nr 2 (25.04.2012): 65. http://dx.doi.org/10.14710/bioma.10.2.65-73.
Pełny tekst źródłaAKA, Natchia, Abou Traoré, Nadi Paul Dangui i Yao Dakro Albert Gboko. "Suivi de la turbidité et des matières en suspension dans les rivières côtières en milieu tropical : cas de la Mé et de l’Agneby (sud-est de la Cote d’Ivoire)". Journal of Applied Biosciences 183 (31.03.2023): 19103–22. http://dx.doi.org/10.35759/jabs.183.1.
Pełny tekst źródłaHill, Jenna C., Janet T. Watt, Daniel S. Brothers i Jared W. Kluesner. "Submarine canyons, slope failures and mass transport processes in southern Cascadia". Geological Society, London, Special Publications 500, nr 1 (2020): 453–75. http://dx.doi.org/10.1144/sp500-2019-169.
Pełny tekst źródłaNormandeau, Alexandre, i D. Calvin Campbell. "Recurrence of turbidity currents on glaciated continental margins: A conceptual model from eastern Canada". Journal of Sedimentary Research 90, nr 10 (1.10.2020): 1305–21. http://dx.doi.org/10.2110/jsr.2020.66.
Pełny tekst źródłaRozprawy doktorskie na temat "Turbidity"
Fay, Gemma Louise. "Mathematical modelling of turbidity currents". Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:62bb9382-1c50-47f3-8f59-66924cc31760.
Pełny tekst źródłaRajapakse, Jayasiri Pemathilake. "Pre-filtration of high turbidity waters". Thesis, University College London (University of London), 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.497127.
Pełny tekst źródłaEdwards, Deborah Anne. "Turbidity currents : dynamics, deposits and reversals". Thesis, University of Leeds, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.293760.
Pełny tekst źródłaStraub, Kyle M. "Quantifying turbidity current interactions with topography". Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/40864.
Pełny tekst źródłaThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Includes bibliographical references (p. 196-205).
This thesis advances our understanding of how transport properties of turbidity currents are mediated by interactions with seafloor topography, specifically channelized surfaces. Turbidity currents are responsible for crafting the morphology of continental margins. Unfortunately, very few direct observations exists defining turbidity current interactions with submarine channels and canyons because infrequent occurrence, great water depths, and high current velocities make measurements difficult to obtain. To overcome this problem, I utilize reduced scale laboratory experiments, remote sensing of the seafloor and subsurface deposits, and numerical analysis of transport processes. I focus on resolving the topography and composition of the evolving water-sediment interface with additional measurements that characterize the sediment transport and flow fields. I begin by quantifying interactions between turbidity currents and channel-bounding levees. Levees are the primary elements of self-formed channels and act to confine flows within channels, thereby increasing transport efficiency. I quantify the morphology and growth of levees in a submarine channel network offshore Borneo. Levee deposit trends are interpreted using laboratory observations and a morphodynamic model describing levee growth. Channel and levee deposits resulting from interactions between turbidity currents and sinuous submarine channels are then studied using reduced-scale laboratory experiments. Measurements of current superelevation in channel bends are used to illustrate the importance of current runup onto the outer banks of channel bends. This runup resulted in focused overbank flow and production of thick, coarse, steep levees at these sites.
(cont.) Additional laboratory experiments illustrate the importance of current-channel bend interactions to the runout length of turbidity currents. I observed enhanced mixing in channel bends that reduced proximal deposition rates in sinuous channels compared to straight channels. I hypothesize that a wholesale vertical mixing of suspended sediment within turbidity currents at channel bends is a necessary condition for the construction of submarine channels greater than 100 km in length. Finally, I document the deepening of submarine canyons under net depositional conditions using an industry-grade seismic volume from the continental slope offshore Borneo. Interpretation of seismic horizons suggests deposition resulted from sheet-like turbidity currents, highlighting the importance of unconfined currents to the evolution of seascapes.
by Kyle M. Straub.
Ph.D.
Altinakar, Mustafa Siddik. "Weakly depositing turbidity currents on small slopes". Online version, 1993. http://bibpurl.oclc.org/web/26138.
Pełny tekst źródłaGoater, Alexander James Nicholas. "Shallow-layer modelling of submarine turbidity currents". Thesis, University of Bristol, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.566708.
Pełny tekst źródłaLucchese, Luisa Vieira. "Estudo numérico da sedimentação em correntes de turbidez com evolução do relevo de fundo". reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2018. http://hdl.handle.net/10183/175016.
Pełny tekst źródłaGravity currents are gravitational fluxes triggered by density di erence between two fluids. A sub-classification of those are turbidity currents, in which the denser fluid is composed by the lighter fluid plus suspended particles. Many papers had shown turbidity currents dynamics, although none of the papers found had applied changes in the simulated topography due to deposit during the own simulation, neither they had altered a 3D domain topography after each flux, applying the changes caused by the previous current. The present dissertation aims to analyse the turbidity current dynamics alteration caused by the influence of its own deposit, altering the topography during the very simulation. The analysis is conducted in a polidispersed turbidity current. The Incompact3d code solves Navier-Stokes, continuity and transport-di usion equation, in a tridimensional cartesian mesh. Lock-exchange was chosen to be the initial condition. Direct Numerical Simulations (DNS) are performed. Sixth order compact finite-di erence schemes are used on the spatial domain, while third order Adams-Bashfort is applied for the temporal evaluation. Comparisons with numerical and experimental papers were performed for code verification. Results showed the coarser the particles on the starting lock-exchange, the higher its deposit is, and the more the terrain will be altered. Nevertheless, the bigger the compacting factor, the bigger the error of not considering bathymetry alteration. Results also point that the average errors of not considering the update are in order of 4% on the mass deposit, after 20 dimensionless times, for the used parameters. When a current propagates over the deposit of a previous one, these errors are smaller.
BITTON, LUIZ FERNANDO ROCHA. "VALIDATION OF SIMPLIFIED MATHEMATICAL MODEL FOR TURBIDITY CURRENTS". PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2008. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=12078@1.
Pełny tekst źródłaCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
A combinação de modelos numéricos com modelos computacionais tem contribuido muito para o melhor entendimento matemático de fluxos gravitacionais, porém esses modelos não podem substituir a análise através de trabalhos experimentais. O uso de modelos físicos em escala provou ser essencial na validação de equações para modelagem de correntes de turbidez. Com o objetivo de diminuir o nível de dificuldade em modelar numericamente essas correntes e de gerar modelos computacionais de alto desempenho, algumas simplificações foram feitas durante o desenvolvimento das equações de velocidade. Dessa forma, para provar que tais simplificações não iriam alterar os resultados numéricos do modelo, foram realizados inúmeros experimentos, coletando informações sobre a evolução espaço- temporal de velocidades das correntes de turbidez não- confinadas com e sem partículas. Comparando os resultados do modelo numérico com os do modelo físico, foi concluído que, infelizmente, as aproximações influenciaram os resultados. Contudo, os dados e a comparação visual entre as simulações também revelaram alguns resultados encorajadores, os quais estimularão pesquisas futuras para se melhorar a precisão da equação de velocidade utilizada no modelo numérico.
The combination between numerical and computer models has improved dramatically the mathematical understanding of gravity currents; however, these models can not replace the analysis by experimental work. The use of scaled analogue models, or physical models, proved to be essential in validating velocity equations for turbidity currents. In order to reduce the level of difficulty to model mathematically these currents, some approximations were applied during the development of the velocity equation. Therefore, willing to prove that these approximations would not compromise the numerical results, innumerous experiments were performed to acquire a spatio-temporal velocity evolution database for both unconfined particle free and particulate turbidity flows. Comparing the results from the numerical and physical simulations, it was concluded that, unfortunately, the approximations have influenced the numerical results. Nevertheless, the data and visual comparisons between the simulations also revealed some encouraging results, which will stimulate some future research to improve the accuracy of the depth-averaging velocity equation.
Ho, Viet Luan. "Multi-pulsed turbidity current dynamics and geological implications". Thesis, University of Leeds, 2018. http://etheses.whiterose.ac.uk/20794/.
Pełny tekst źródłaHu, Peng. "Coupled modelling of turbidity currents over erodible beds". Thesis, Heriot-Watt University, 2012. http://hdl.handle.net/10399/2563.
Pełny tekst źródłaKsiążki na temat "Turbidity"
V, Stow D. A., red. Deep-water turbidite systems. Oxford: Blackwell Scientific Publications, 1992.
Znajdź pełny tekst źródłaSlatt, Roger M., i Carlos Zavala. Sediment transfer from shelf to deep water: Revisiting the delivery system. Tulsa, OK: Co-published by the American Association of Petroleum Geologists and SEPM, 2011.
Znajdź pełny tekst źródłaMoyer, Douglas L. Continuous turbidity monitoring in the Indian Creek Watershed, Tazewell County, Virginia, 2006-08. Reston, Va: U.S. Geological Survey, 2009.
Znajdź pełny tekst źródłaMoyer, Douglas L. Continuous turbidity monitoring in the Indian Creek Watershed, Tazewell County, Virginia, 2006-08. Reston, Va: U.S. Geological Survey, 2009.
Znajdź pełny tekst źródłaEdwards, Deborah Anne, red. Turbidity Currents: Dynamics, Deposits and Reversals. Berlin/Heidelberg: Springer-Verlag, 1993. http://dx.doi.org/10.1007/bfb0019704.
Pełny tekst źródłaHerbich, John B. Turbidity generated by a model cutterhead dredge. College Station, Tex: Sea Grant College Program, Texas A & M University, 1985.
Znajdź pełny tekst źródłaLi, Qilin. Assessing the effectiveness and environmental impacts of using natural flocculants to manage turbidity: Final report. Salem, OR: Oregon Dept. of Transportation, Research Unit, 2005.
Znajdź pełny tekst źródłaGippel, Christopher James. The effect of water colour, particle size, and particle composition on stream water turbidity measurements. Campbell, ACT, Australia: Dept. of Geography and Oceanography, University College, University of NSW, Australian Defence Force Academy, 1988.
Znajdź pełny tekst źródłaVohs, Paul A. A critical review of the effects of turbidity on aquatic organisms in large rivers. Onalaska, Wis: The Center, 1993.
Znajdź pełny tekst źródłaE, Olson Leif, Geological Survey (U.S.), Chester County Water Resources Authority i Chester County (Pa.). Health Department, red. Estimated suspended-sediment loads and yields in the French and Brandywine Creek Basins, Chester County, Pennsylvania, water years 2008-09. Reston, Va: U.S. Dept. of the Interior, U.S. Geological Survey, 2011.
Znajdź pełny tekst źródłaCzęści książek na temat "Turbidity"
Czyż, Ewa A., i Anthony R. Dexter. "Turbidity". W Encyclopedia of Agrophysics, 938–40. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-3585-1_178.
Pełny tekst źródłaGooch, Jan W. "Turbidity". W Encyclopedic Dictionary of Polymers, 774. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_12216.
Pełny tekst źródłaGorokhovich, Yuri. "Turbidity". W Encyclopedia of Estuaries, 720–21. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-8801-4_253.
Pełny tekst źródłaGooch, Jan W. "Turbidity". W Encyclopedic Dictionary of Polymers, 930. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_15034.
Pełny tekst źródłaDowning, John. "Turbidity Monitoring". W Environmental Instrumentation and Analysis Handbook, 511–46. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471473332.ch24.
Pełny tekst źródłaWu, Weiming. "Turbidity Currents". W Sediment Transport Dynamics, 496–533. London: CRC Press, 2023. http://dx.doi.org/10.1201/9781003343165-14.
Pełny tekst źródłaMbonu, C. C., O. Kilanko, M. B. Kilanko i P. O. Babalola. "Turbidity and Urine Turbidity: A Mini Review". W Bioenergy and Biochemical Processing Technologies, 253–67. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96721-5_22.
Pełny tekst źródłaCartigny, Matthieu J. B., i George Postma. "Turbidity Current Bedforms". W Atlas of Bedforms in the Western Mediterranean, 29–33. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-33940-5_6.
Pełny tekst źródłaJain, Aakanchha, Richa Jain i Sourabh Jain. "Digital Turbidity Meter". W Basic Techniques in Biochemistry, Microbiology and Molecular Biology, 21–22. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-4939-9861-6_10.
Pełny tekst źródłaAllen, J. R. L. "A matter of turbidity". W Principles of Physical Sedimentology, 123–37. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-010-9683-6_7.
Pełny tekst źródłaStreszczenia konferencji na temat "Turbidity"
A. Waltham, D. "Turbidity Current Modelling". W EAGE Research Workshop - From Seismic Interpretation to Stratigraphic and Basin Modelling, Present and Future. European Association of Geoscientists & Engineers, 2006. http://dx.doi.org/10.3997/2214-4609.201403027.
Pełny tekst źródłaLuo, Yonggang, Yijun Cao, Guanjun Liu, Yingqi Sun, Jun Zou i Wenke Qi. "Miniaturized Optical Fiber Turbidity Sensor for Turbidity Monitoring in Constricted Space". W 2023 IEEE 16th International Conference on Electronic Measurement & Instruments (ICEMI). IEEE, 2023. http://dx.doi.org/10.1109/icemi59194.2023.10270802.
Pełny tekst źródłaPerlicki, Krzysztof T., Maria Beblowska i Jerzy Kruszewski. "Fiber optics turbidity sensor". W Optoelectronic and Electronic Sensors, redaktorzy Ryszard Jachowicz i Zdzislaw Jankiewicz. SPIE, 1995. http://dx.doi.org/10.1117/12.213158.
Pełny tekst źródłaChiang, Cheng-Ta, i Shih-Ming Huang. "A CMOS turbidity to frequency converter with calibration circuits for detecting turbidity applications". W 2015 IEEE International Conference on Mechatronics and Automation (ICMA). IEEE, 2015. http://dx.doi.org/10.1109/icma.2015.7237515.
Pełny tekst źródłaNair, Devika S., i Sanju Sreedharan. "Reduction of Turbidity by Electrocoagulation". W Proceedings of the Advances in Technology, Engineering and Computing A Multinational Colloquium - 2017. Singapore: Research Publishing Services, 2017. http://dx.doi.org/10.3850/978-981-11-0744-3_c17-11.
Pełny tekst źródłaKarnawat, Vaibhav, i S. L. Patil. "Turbidity detection using image processing". W 2016 International Conference on Computing, Communication and Automation (ICCCA). IEEE, 2016. http://dx.doi.org/10.1109/ccaa.2016.7813877.
Pełny tekst źródłaYoung, Xiaolin. "Low-range process turbidity sensor". W International Conference on Sensors and Control Techniques (ICSC2000), redaktorzy Desheng Jiang i Anbo Wang. SPIE, 2000. http://dx.doi.org/10.1117/12.385594.
Pełny tekst źródłaTalhami, Mohammed, Wardan Al-Khatib, Obadah Dahdal, Mohammad K. Hassan i Alaa H. AlHawari. "Efficient Turbidity Removal Using a New Gel Filtration Process". W The 2nd International Conference on Civil Infrastructure and Construction. Qatar University Press, 2023. http://dx.doi.org/10.29117/cic.2023.0158.
Pełny tekst źródłaBarrera, Rubén G., Edahí Gutiérrez-Reyes i Augusto García-Valenzuela. "Colloidal Optics: From Transparency to Turbidity". W Latin America Optics and Photonics Conference. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/laop.2014.ltu3c.1.
Pełny tekst źródłaOstryk, Oleksandr, i Svitlana Oliynyk. "APPEARANCE OF TURBIDITY IN ALCOHOLIC BEVERAGES". W Relevant Issues of the Development of Science in Central and Eastern European Countries. Publishing House “Baltija Publishing”, 2019. http://dx.doi.org/10.30525/978-9934-588-11-2_12.
Pełny tekst źródłaRaporty organizacyjne na temat "Turbidity"
Longtin, F. B. Aluminum Corrosion and Turbidity. Office of Scientific and Technical Information (OSTI), marzec 2003. http://dx.doi.org/10.2172/810370.
Pełny tekst źródłaGarcia, Marcelo H. Turbidity Currents and Seabed Morphology. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2004. http://dx.doi.org/10.21236/ada613084.
Pełny tekst źródłaGarcia, Marcelo H. Turbidity Currents, Bedforms, and Gullies. Fort Belvoir, VA: Defense Technical Information Center, sierpień 2001. http://dx.doi.org/10.21236/ada625966.
Pełny tekst źródłaGarcia, Marcelo H. Turbidity Current Hydrodynamics and Seabed Morphology. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2005. http://dx.doi.org/10.21236/ada572665.
Pełny tekst źródłaTRIMBLE, D. J. Effect of Canister Movement on Water Turbidity. Office of Scientific and Technical Information (OSTI), sierpień 2000. http://dx.doi.org/10.2172/804495.
Pełny tekst źródłaGarcia, Marcelo H. Bedforms Generated by Turbidity Currents in Continental Margins. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2000. http://dx.doi.org/10.21236/ada609705.
Pełny tekst źródłaGarcia, Marcelo H. Sediment Waves and Gullies Generated by Turbidity Currents. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2002. http://dx.doi.org/10.21236/ada627788.
Pełny tekst źródłaFall, Kelsey, David Perkey, Zachary Tyler i Timothy Welp. Field measurement and monitoring of hydrodynamic and suspended sediment within the Seven Mile Island Innovation Laboratory, New Jersey. Engineer Research and Development Center (U.S.), czerwiec 2021. http://dx.doi.org/10.21079/11681/40980.
Pełny tekst źródłaLewis, Jack, i Rand Eads. Implementation guide for turbidity threshold sampling: principles, procedures, and analysis. Albany, CA: U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station, 2009. http://dx.doi.org/10.2737/psw-gtr-212.
Pełny tekst źródłaWilmarth, W. R. Silicon Analysis of Tank 8F and Tank 40H Turbidity Samples. Office of Scientific and Technical Information (OSTI), kwiecień 2001. http://dx.doi.org/10.2172/779685.
Pełny tekst źródła