Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Tunneling (Physics) Tunneling spectroscopy.

Artykuły w czasopismach na temat „Tunneling (Physics) Tunneling spectroscopy”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Tunneling (Physics) Tunneling spectroscopy”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Dalidchik, F. I., M. V. Grishin, S. A. Kovalevskii, N. N. Kolchenko i B. R. Shub. "Scanning Tunneling Vibrational Spectroscopy". Spectroscopy Letters 30, nr 7 (październik 1997): 1429–40. http://dx.doi.org/10.1080/00387019708006735.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Lalowicz, Zdzislaw T. "2H-NMR Spectroscopy of Tunneling Ammonium Ion General Site Symmetry". Zeitschrift für Naturforschung A 43, nr 10 (1.10.1988): 895–908. http://dx.doi.org/10.1515/zna-1988-1010.

Pełny tekst źródła
Streszczenie:
Abstract 2H-NMR powder spectra of tunneling ammonium-d4 ions are computed. A representation of the tunneling Hamiltonian is worked out in the basis of simple product spin wavefunctions. Secular parts of quadrupole and dipole Hamiltonians are taken into account. Examples of spectra are given for tunneling about one C2 or C3 axis, as well as for overall rotations in potentials of higher symmetry. Ranges of tunneling frequencies measurable from the spectra are given for each case. Characteristic shapes of the spectra allow recognition of various ground torsional level structures. Possible further applications and available data are discussed.
Style APA, Harvard, Vancouver, ISO itp.
3

Hasegawa, T., M. Nantoh, S. Heike, A. Takagi, H. Ikuta, K. Kitazawa, M. Kawasaki i H. Koinuma. "Scanning tunneling spectroscopy on highTcsuperconductors". Physica Scripta T49A (1.01.1993): 215–18. http://dx.doi.org/10.1088/0031-8949/1993/t49a/035.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Ng, K. W., S. Pan, A. L. de Lozanne, A. J. Panson i J. Talvacchio. "Tunneling Spectroscopy of HighTcOxide Superconductors with a Scanning Tunneling Microscope". Japanese Journal of Applied Physics 26, S3-2 (1.01.1987): 993. http://dx.doi.org/10.7567/jjaps.26s3.993.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

BOBBA, F., F. GIUBILEO, M. GOMBOS, C. NOCE, A. VECCHIONE, A. M. CUCOLO, D. RODITCHEV, R. LAMY, W. SACKS i J. KLEIN. "SCANNING TUNNELING SPECTROSCOPY ON THE GdSr2RuCu2O8 COMPOUND". International Journal of Modern Physics B 17, nr 04n06 (10.03.2003): 608–13. http://dx.doi.org/10.1142/s0217979203016315.

Pełny tekst źródła
Streszczenie:
Topographic and spectroscopic information on GdSr2RuCu2O8 sintered pellets have been obtained by a home built low temperature Scanning Tunneling Microscope (STM) operating at 4.2 K. The topographic image of the surface showed non homogeneous samples with grains of typical size of about 100 nm. In many locations studied, the Tunneling Spectroscopy reveals the presence of charging effects in the current-voltage characteristics over a voltage range up to 100 mV. Two types of charging effects are clearly distinguished: one corresponds to the reduction of the tunneling conductance around zero bias and is attributed to the Coulomb blockade, and another onw, a stepwise increasing of the current as a function of the bias voltage is identified as Coulomb staircase regime. Besides these spurious charging effects, the current-voltage characteristics often show a pronounced non-linearity around 4.0 mV. This non-linearity, disappearing above the critical temperature of the materials, is connected to the superconducting gap in the GdSr 2 RuCu 2 O 8.
Style APA, Harvard, Vancouver, ISO itp.
6

Svistunov, V. S. "Principles of electron tunneling spectroscopy". Uspekhi Fizicheskih Nauk 152, nr 8 (1987): 715. http://dx.doi.org/10.3367/ufnr.0152.198708t.0715.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Svistunov, V. M., M. A. Belogolovskii i A. I. D'yachenko. "Vacuum tunneling microscopy and spectroscopy". Uspekhi Fizicheskih Nauk 154, nr 1 (1988): 153. http://dx.doi.org/10.3367/ufnr.0154.198801f.0153.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Khaikin, M. S. "Scanning tunneling microscopy and spectroscopy". Uspekhi Fizicheskih Nauk 155, nr 5 (1988): 158–59. http://dx.doi.org/10.3367/ufnr.0155.198805i.0158.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Batkova, M., I. Batko, I. Royanian, A. Prokofiev i E. Bauer. "Tunneling spectroscopy studies of CePt3Si". Journal of Physics: Conference Series 150, nr 5 (1.03.2009): 052018. http://dx.doi.org/10.1088/1742-6596/150/5/052018.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Suzuki, Morio, Shuzo Kawata i Shigenori Ichinose. "Magneto-Tunneling Spectroscopy of InSb". Journal of the Physical Society of Japan 57, nr 4 (15.04.1988): 1372–76. http://dx.doi.org/10.1143/jpsj.57.1372.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Louis, E., F. Flores i P. M. Echenique. "Theory of scanning tunneling spectroscopy". Radiation Effects and Defects in Solids 109, nr 1-4 (lipiec 1989): 309–23. http://dx.doi.org/10.1080/10420158908220548.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Schneider, Wolf-Dieter, i Richard Berndt. "Low-temperature scanning tunneling spectroscopy:". Journal of Electron Spectroscopy and Related Phenomena 109, nr 1-2 (sierpień 2000): 19–31. http://dx.doi.org/10.1016/s0368-2048(00)00104-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Kashiwaya, Satoshi, Hiromi Kashiwaya, Kohta Saitoh, Yasunori Mawatari i Yukio Tanaka. "Tunneling spectroscopy of topological superconductors". Physica E: Low-dimensional Systems and Nanostructures 55 (styczeń 2014): 25–29. http://dx.doi.org/10.1016/j.physe.2013.07.016.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Suderow, H., J. G. Rodrigo, P. Martinez-Samper, S. Vieira, J. P. Brison, P. Lejay, P. C. Canfield, S. I. Lee i S. Tajima. "Scanning Tunneling Spectroscopy in Anisotropic s-Wave Superconductors". International Journal of Modern Physics B 17, nr 18n20 (10.08.2003): 3300–3303. http://dx.doi.org/10.1142/s0217979203020892.

Pełny tekst źródła
Streszczenie:
We discuss Scanning Tunneling Microscopy and Spectroscopy (STM/S) measurements at very low temperatures in single crystals of the non magnetic borocarbide superconductors RNi 2 B 2 C ( R = Y , Lu , T c=15.5 and 16.5 K) and in MgB 2. The tunneling spectra in some regions of the surface show a clear reduction of the anisotropy of the superconducting gap.
Style APA, Harvard, Vancouver, ISO itp.
15

Feuchtwang, T. E. "Principles of electron tunneling spectroscopy". Materials Research Bulletin 21, nr 4 (kwiecień 1986): 503. http://dx.doi.org/10.1016/0025-5408(86)90017-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Niemi, Eeva, i Jouko Nieminen. "Channel selective scanning tunneling spectroscopy". Surface Science 600, nr 12 (czerwiec 2006): 2548–54. http://dx.doi.org/10.1016/j.susc.2006.04.019.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Sandow, B., O. Bleibaum i W. Schirmacher. "Tunneling spectroscopy in the hopping regime". physica status solidi (c) 1, nr 1 (styczeń 2004): 92–95. http://dx.doi.org/10.1002/pssc.200303639.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Sobol, W. T., K. R. Sridharan, I. G. Cameron i M. M. Pintar. "Tunneling Spectroscopy by Nuclear Magnetic Resonance: Analysis of Rotational Tunneling in Solid Pentamethylbenzene". Zeitschrift für Naturforschung A 40, nr 11 (1.11.1985): 1075–84. http://dx.doi.org/10.1515/zna-1985-1102.

Pełny tekst źródła
Streszczenie:
The frequency dependence of the spin-lattice relaxation time T1 was measured at three temperatures near one of the Zeeman-tunneling level matching resonances for pentamethylbenzene. These measurements are correlated with 71 temperature dependence data from the literature. It is shown that the frequency dependence of the Zeeman-torsion coupling time cannot be explained in terms of the semiclassical perturbation theory using time correlation functions. A three bath polarization transfer model is also employed and the applicability of both models discussed. Zeeman-torsion coupling is further investigated using a saturation sequence and the results are compared with the predictions of the three bath polarization transfer model.
Style APA, Harvard, Vancouver, ISO itp.
19

Onari, S., i Y. Tanaka. "Theory of tunneling spectroscopy in". Physica C: Superconductivity 469, nr 15-20 (październik 2009): 912–14. http://dx.doi.org/10.1016/j.physc.2009.05.097.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Sakata, H., T. Sakuyama i T. Kato. "Scanning tunneling spectroscopy on Bi2SrCaCuO6+". Physica C: Superconductivity and its Applications 470 (grudzień 2010): S104—S105. http://dx.doi.org/10.1016/j.physc.2009.12.038.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Martinez-Samper, P., J. G. Rodrigo, G. Rubio-Bollinger, H. Suderow, S. Vieira, S. Lee i S. Tajima. "Scanning tunneling spectroscopy in MgB2". Physica C: Superconductivity 385, nr 1-2 (marzec 2003): 233–43. http://dx.doi.org/10.1016/s0921-4534(02)02296-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Panov, Vladimir I. "Scanning tunneling microscopy and surface spectroscopy". Uspekhi Fizicheskih Nauk 155, nr 5 (1988): 155–58. http://dx.doi.org/10.3367/ufnr.0155.198805h.0155.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Baťková, M., I. Baťko, E. Konovalova i N. Shitsevalova. "Tunneling Spectroscopy Studies of SmB6and YbB12". Acta Physica Polonica A 113, nr 1 (styczeń 2008): 255–58. http://dx.doi.org/10.12693/aphyspola.113.255.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Baiburin, V. B., Yu P. Volkov, E. M. Il’in i S. V. Semenov. "Tunneling spectroscopy of palladium-barium emitters". Technical Physics Letters 28, nr 12 (grudzień 2002): 981–82. http://dx.doi.org/10.1134/1.1535508.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Maggio-Aprile, I., Ch Renner, A. Erb, E. Walker i �. Fischer. "Scanning tunneling spectroscopy studies on YBa2Cu3O7??" Journal of Low Temperature Physics 105, nr 5-6 (grudzień 1996): 1129–34. http://dx.doi.org/10.1007/bf00753851.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Ichimura, Koichi, Kazushige Nomura i Atsushi Kawamoto. "Scanning Tunneling Spectroscopy on Organic Superconductors". Japanese Journal of Applied Physics 45, nr 3B (27.03.2006): 2264–67. http://dx.doi.org/10.1143/jjap.45.2264.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Morita, Seizo, Yutaka Maita i Yoshiaki Takahashi. "Scanning Tunneling Potentiometry/Spectroscopy (STP/STS)". Japanese Journal of Applied Physics 28, Part 2, No. 11 (20.11.1989): L2034—L2036. http://dx.doi.org/10.1143/jjap.28.l2034.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

KATO, T., T. MACHIDA, Y. KAMIJO, K. HARADA, R. SAITO, T. NOGUCHI i H. SAKATA. "SPATIAL EVOLUTION OF THE BACKGROUND CONDUCTANCE IN THE TUNNELING SPECTRA IN Bi2Sr2-xLaxCuO6+δ". International Journal of Modern Physics B 21, nr 18n19 (30.07.2007): 3190–93. http://dx.doi.org/10.1142/s0217979207044160.

Pełny tekst źródła
Streszczenie:
The spatial evolution of the background conductance in the tunneling spectra was investigated with low-temperature scanning tunneling spectroscopy on a slightly overdoped Bi 2 Sr 1.74 La 0.26 CuO 6+δ single crystal at 4.2 K. The asymmetry in the background conductance between positive and negative biases strongly correlates with the local energy gap, which shows the inhomogeneous spatial variation: the tunneling spectra become more asymmetric in the regions where the spectra exhibit larger gap value.
Style APA, Harvard, Vancouver, ISO itp.
29

Bagraev, N. T. "Local Tunneling Spectroscopy of Silicon Nanostructures". Semiconductors 39, nr 6 (2005): 685. http://dx.doi.org/10.1134/1.1944860.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

MIYAKAWA, N., K. TOKIWA, S. MIKUSU, T. WATANABE, A. IYO, J. F. ZASADZINSKI i T. KANEKO. "TUNNELING SPECTROSCOPY OF TRILAYER HIGH-TC CUPRATE, TlBa2Ca2Cu2O10-δ". International Journal of Modern Physics B 19, nr 01n03 (30.01.2005): 225–29. http://dx.doi.org/10.1142/s0217979205028281.

Pełny tekst źródła
Streszczenie:
We present point contact tunneling spectroscopy measured on TlBa 2 Ca 2 Cu 3 O 10-δ ( Tl 1223) with three CuO 2 planes in a unit cell. Our samples of Tl 1223 with Tc~91 K are heavily overdoped at the outer CuO 2 planes (OP), but slightly underdoped at the inner CuO 2 planes (IP). The tunneling conductances on Tl 1223 exhibit two kinds of gaps that originate from crystallographically inequivalent IP and OP. The overall spectral shape of tunneling conductance for Tl 1223 is consistent with that observed on a bilayer Bi 2 Sr 2 CaCu 2 O 8+δ, that is, unusual peak-dip-hump (PDH) structures are observed. The origin of PDH structures is controversial, but these results, especially, the observation of PDH for trilayer Tl 1223 in which interlayer effects should be quite different from that in bilayer, put severe constraints on any theoretical model for the origin of these structures.
Style APA, Harvard, Vancouver, ISO itp.
31

Zypman, Fredy R. "Scanning tunneling microscope spectroscopy of polymers". Scanning 24, nr 3 (6.12.2006): 154–56. http://dx.doi.org/10.1002/sca.4950240308.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Fan, Fu Ren F., i Allen J. Bard. "Scanning tunneling microscopy and tunneling spectroscopy of the titania(001) surface". Journal of Physical Chemistry 94, nr 9 (maj 1990): 3761–66. http://dx.doi.org/10.1021/j100372a075.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Schneider, W. D. "Scanning Tunneling Microscopy/Spectroscopy of Nanostructures". physica status solidi (a) 187, nr 1 (wrzesień 2001): 125–36. http://dx.doi.org/10.1002/1521-396x(200109)187:1<125::aid-pssa125>3.0.co;2-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Matyushkin, Yakov, Natalia Kaurova, Boris Voronov, Gregory Goltsman i Georgy Fedorov. "On chip carbon nanotube tunneling spectroscopy". Fullerenes, Nanotubes and Carbon Nanostructures 28, nr 1 (11.10.2019): 50–53. http://dx.doi.org/10.1080/1536383x.2019.1671365.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Noh, Joo-Hyong, Hajime Asahi, Seong-Jin Kim, Minori Takemoto i Shun-ichi Gonda. "Scanning Tunneling Microscopy/Scanning Tunneling Spectroscopy Observation of III–V Compound Semiconductor Nanostructures". Japanese Journal of Applied Physics 35, Part 1, No. 6B (30.06.1996): 3743–48. http://dx.doi.org/10.1143/jjap.35.3743.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Selloni, A., C. D. Chen i E. Tosatti. "Scanning tunneling spectroscopy of graphite and intercalates". Physica Scripta 38, nr 2 (1.08.1988): 297–300. http://dx.doi.org/10.1088/0031-8949/38/2/036.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Olk, Charles H., i Joseph P. Heremans. "Scanning tunneling spectroscopy of carbon nanotubes". Journal of Materials Research 9, nr 2 (luty 1994): 259–62. http://dx.doi.org/10.1557/jmr.1994.0259.

Pełny tekst źródła
Streszczenie:
Calculations predict that carbon nanotubes may exist as either semimetals or semiconductors, depending on diameter and degree of helicity. This communication presents experimental evidence supporting the calculations. Scanning tunneling microscopy and spectroscopy (STM-S) data taken in air on nanotubes with outer diameters from 17 to 90 Å show evidence of one-dimensional behavior; the current-voltage (I-V) characteristics are consistent with a density of states containing Van Hove type singularities for which the energies vary linearly with inverse nanotube diameter.
Style APA, Harvard, Vancouver, ISO itp.
38

Severin, N., S. Groeper, R. Kniprath, H. Glowatzki, N. Koch, I. M. Sokolov i J. P. Rabe. "Data scattering in scanning tunneling spectroscopy". Ultramicroscopy 109, nr 1 (grudzień 2008): 85–90. http://dx.doi.org/10.1016/j.ultramic.2008.08.006.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Aarts, J., i A. P. Volodin. "Tunneling spectroscopy on correlated electron systems". Physica B: Condensed Matter 206-207 (luty 1995): 43–48. http://dx.doi.org/10.1016/0921-4526(94)00363-z.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

GALPERIN, YU M., ULRIK HANKE, K. A. CHAO i NANZHI ZOU. "SHOT NOISES IN A CORRELATED TUNNELING CURRENT". Modern Physics Letters B 07, nr 17 (20.07.1993): 1159–65. http://dx.doi.org/10.1142/s0217984993001168.

Pełny tekst źródła
Streszczenie:
An analytical expression for shot noises in a correlated sequential tunneling current has been derived by solving the Master equation exactly. The existing result for the simplest case of Pauli correlation is easily reproduced. Our theory is applied to the Coulomb blockade single-electron tunneling system with two tunnel junctions. Given capacitances and resistances of the system, both the suppressed zero-frequency shot noise and the entire finite-frequency noise spectrum are obtained, which are much more complicated than the simplest Pauli correlation case. Our theoretical predictions, after being confirmed experimentally, will introduce the noise spectroscopy as a tool to investigate correlated tunneling current.
Style APA, Harvard, Vancouver, ISO itp.
41

Carroll, D. L., P. M. Ajayan i S. Curran. "Local Electronic Structure in Ordered Aggregates of Carbon Nanotubes: Scanning Tunneling Microscopy/scanning Tunneling Spectroscopy Study". Journal of Materials Research 13, nr 9 (wrzesień 1998): 2389–95. http://dx.doi.org/10.1557/jmr.1998.0332.

Pełny tekst źródła
Streszczenie:
The recent application of tunneling probes in electronic structure studies of carbon nanotubes has proven both powerful and challenging. Using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS), local electronic properties in ordered aggregates of carbon nanotubes (multiwalled nanotubes and ropes of single walled nanotubes) have been probed. In this report, we present evidence for interlayer (concentric tube) interactions in multiwalled tubes and tube-tube interactions in singlewalled nanotube ropes. The spatially resolved, local electronic structure, as determined by the local density of electronic states, is shown to clearly reflect tube-tube interactions in both of these aggregate forms.
Style APA, Harvard, Vancouver, ISO itp.
42

Zhang, H., D. Mautes i U. Hartmann. "Electron tunneling through a monolayer of small metal clusters investigated by scanning tunneling spectroscopy". Journal of Physics: Conference Series 61 (1.04.2007): 1331–35. http://dx.doi.org/10.1088/1742-6596/61/1/263.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Nolen, S., i S. T. Ruggiero. "Tunneling spectroscopy of fullerene/Ge multilayer systems". Chemical Physics Letters 300, nr 5-6 (luty 1999): 656–60. http://dx.doi.org/10.1016/s0009-2614(98)01442-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Wnuk, J. J., R. T. M. Smokers, F. W. Nolden, L. W. M. Schreurs, Y. S. Wang i H. van Kempen. "Tunneling spectroscopy in (PbxBi1-x)2Sr2CaCu2O8crystals". Superconductor Science and Technology 4, nr 1S (1.01.1991): S412—S414. http://dx.doi.org/10.1088/0953-2048/4/1s/123.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Yada, Keiji, Alexander A. Golubov, Yukio Tanaka i Satoshi Kashiwaya. "Microscopic Theory of Tunneling Spectroscopy in Sr2RuO4". Journal of the Physical Society of Japan 83, nr 7 (15.07.2014): 074706. http://dx.doi.org/10.7566/jpsj.83.074706.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Wang, Z. Z., J. C. Girard, C. Pasquier i D. Jérome. "Spatially resolved tunneling spectroscopy on TTF-TCNQ". Journal de Physique IV (Proceedings) 114 (kwiecień 2004): 91–94. http://dx.doi.org/10.1051/jp4:2004114017.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Chapelier, C., M. Vinet i F. Lefloch. "Scanning tunneling spectroscopy on superconducting proximity nanostructures". Physics-Uspekhi 44, nr 10S (1.10.2001): 71–74. http://dx.doi.org/10.1070/1063-7869/44/10s/s15.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Jourdan, M., A. Conca, C. Herbort, M. Kallmayer, H. J. Elmers i H. Adrian. "Tunneling spectroscopy of the Heusler compound Co2Cr0.6Fe0.1Al". Journal of Applied Physics 102, nr 9 (listopad 2007): 093710. http://dx.doi.org/10.1063/1.2805399.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Volkov, V. A., E. E. Takhtamirov, D. Yu Ivanov, Yu V. Dubrovskii, L. Eaves, P. C. Main, M. Henini i in. "Tunneling spectroscopy of quasi-two-dimensional plasmons". Uspekhi Fizicheskih Nauk 171, nr 12 (2001): 1368. http://dx.doi.org/10.3367/ufnr.0171.200112g.1368.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Zeng, Caifu, Minsheng Wang, Yi Zhou, Murong Lang, Bob Lian, Emil Song, Guangyu Xu, Jianshi Tang, Carlos Torres i Kang L. Wang. "Tunneling spectroscopy of metal-oxide-graphene structure". Applied Physics Letters 97, nr 3 (19.07.2010): 032104. http://dx.doi.org/10.1063/1.3460283.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii