Gotowa bibliografia na temat „Tunneling (Physics) Tunneling spectroscopy”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Tunneling (Physics) Tunneling spectroscopy”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Tunneling (Physics) Tunneling spectroscopy"
Dalidchik, F. I., M. V. Grishin, S. A. Kovalevskii, N. N. Kolchenko i B. R. Shub. "Scanning Tunneling Vibrational Spectroscopy". Spectroscopy Letters 30, nr 7 (październik 1997): 1429–40. http://dx.doi.org/10.1080/00387019708006735.
Pełny tekst źródłaLalowicz, Zdzislaw T. "2H-NMR Spectroscopy of Tunneling Ammonium Ion General Site Symmetry". Zeitschrift für Naturforschung A 43, nr 10 (1.10.1988): 895–908. http://dx.doi.org/10.1515/zna-1988-1010.
Pełny tekst źródłaHasegawa, T., M. Nantoh, S. Heike, A. Takagi, H. Ikuta, K. Kitazawa, M. Kawasaki i H. Koinuma. "Scanning tunneling spectroscopy on highTcsuperconductors". Physica Scripta T49A (1.01.1993): 215–18. http://dx.doi.org/10.1088/0031-8949/1993/t49a/035.
Pełny tekst źródłaNg, K. W., S. Pan, A. L. de Lozanne, A. J. Panson i J. Talvacchio. "Tunneling Spectroscopy of HighTcOxide Superconductors with a Scanning Tunneling Microscope". Japanese Journal of Applied Physics 26, S3-2 (1.01.1987): 993. http://dx.doi.org/10.7567/jjaps.26s3.993.
Pełny tekst źródłaBOBBA, F., F. GIUBILEO, M. GOMBOS, C. NOCE, A. VECCHIONE, A. M. CUCOLO, D. RODITCHEV, R. LAMY, W. SACKS i J. KLEIN. "SCANNING TUNNELING SPECTROSCOPY ON THE GdSr2RuCu2O8 COMPOUND". International Journal of Modern Physics B 17, nr 04n06 (10.03.2003): 608–13. http://dx.doi.org/10.1142/s0217979203016315.
Pełny tekst źródłaSvistunov, V. S. "Principles of electron tunneling spectroscopy". Uspekhi Fizicheskih Nauk 152, nr 8 (1987): 715. http://dx.doi.org/10.3367/ufnr.0152.198708t.0715.
Pełny tekst źródłaSvistunov, V. M., M. A. Belogolovskii i A. I. D'yachenko. "Vacuum tunneling microscopy and spectroscopy". Uspekhi Fizicheskih Nauk 154, nr 1 (1988): 153. http://dx.doi.org/10.3367/ufnr.0154.198801f.0153.
Pełny tekst źródłaKhaikin, M. S. "Scanning tunneling microscopy and spectroscopy". Uspekhi Fizicheskih Nauk 155, nr 5 (1988): 158–59. http://dx.doi.org/10.3367/ufnr.0155.198805i.0158.
Pełny tekst źródłaBatkova, M., I. Batko, I. Royanian, A. Prokofiev i E. Bauer. "Tunneling spectroscopy studies of CePt3Si". Journal of Physics: Conference Series 150, nr 5 (1.03.2009): 052018. http://dx.doi.org/10.1088/1742-6596/150/5/052018.
Pełny tekst źródłaSuzuki, Morio, Shuzo Kawata i Shigenori Ichinose. "Magneto-Tunneling Spectroscopy of InSb". Journal of the Physical Society of Japan 57, nr 4 (15.04.1988): 1372–76. http://dx.doi.org/10.1143/jpsj.57.1372.
Pełny tekst źródłaRozprawy doktorskie na temat "Tunneling (Physics) Tunneling spectroscopy"
Bautista, Anthony. "TUNNELING SPECTROSCOPY STUDY OF CALCIUM RUTHENATE". UKnowledge, 2010. http://uknowledge.uky.edu/gradschool_diss/784.
Pełny tekst źródłaChan, Ho Bun 1969. "Tunneling spectroscopy of the two-dimensional electron gas". Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/9387.
Pełny tekst źródłaIncludes bibliographical references (p. 155-161).
We measure the single particle density of states (DOS) of a two-dimensional electron system (2DES) in a GaAs/AlGaAs heterostructure. Using a technique that we call "Time Domain Capacitance Spectroscopy" (TDCS), we measure the complete current-voltage characteristics for tunneling into the 2DES without making ohmic contacts to it. TDCS detects the tunneling current in regimes difficult to access by conventional methods, such as when the in-plane conductance is low. For the first time we detect the contributions of localized states to the tunneling current. The DOS of an interacting 2DES in the diffusive limit displays logarithmic energy dependence near the Fermi level. Using TDCS, we measure the voltage dependence of the tunneling conductance of a semiconductor 2DES and observe the logarithmic Coulomb anomaly for the first time in 2D systems other than thin metal films. As we increase the density, this suppression in tunneling conductance narrows and recedes. Nevertheless suppression reappears when we apply a magnetic field perpendicular to the 2D plane. We find that the tunneling conductance depends linearly on voltage near zero bias for all magnetic field strengths and electron densities. Moreover, the slopes of this linear gap are strongly field dependent. The data are suggestive of a new model of the tunneling gap in the presence of disorder and screening. We also use TDCS to study the interactions among electronic spins. By applying excitations less than kT, we observe that equilibrium tunneling into spin-polarized quantum Hall states (v=l, 3, 1/3) occurs at two distinct tunneling rates for samples of very high mobility. Some electrons tunnel into the 2DES at a fast rate while the rest tunnel at a rate up to 2 orders of magnitude slower. Such novel double-rate tunneling is not observed at even-integer filling fractions where the 2DES is not spin-polarized. The dependence of the two rates on magnetic field, temperature and tunnel barrier thickness suggests that slow in-plane spin relaxation, possibly related to formation of Skyrmions, leads to a bottleneck for tunneling of electrons.
by Ho Bun Chan.
Ph.D.
Zimmermann, Michelle (Michelle Anne). "Scanning tunneling spectroscopy of lead-substituted bismuth strontium copper oxide". Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/40919.
Pełny tekst źródłaIncludes bibliographical references (leaves 39-43).
The hole-doped cuprate Bi ... is doped with lead to the solubility limit of x = 0.38 and studied using STM/STS in the overdoped regime where Tc < 2K. Despite the high lead content, residual supermodulations are observed in the BiO plane. In agreement with previous studies on (Pb,Bi)-2201, there is no separation of the sample into Pb-rich and Pb-poor domains, nor is there a spectral correlation with Pb location. Differential tunneling conductance is modeled using the van Hove scenario, wherein modulated regions are shown to have higher values of EVHS than flat regions. The consistency of parameters matching theoretical predictions to tunneling spectra suggest that EVHS describes a significant part of the density of states.
by Michelle Zimmermann.
S.B.
Yee, Michael Manchun. "Scanning Tunneling Spectroscopy of Topological Insulators and Cuprate Superconductors". Thesis, Harvard University, 2014. http://dissertations.umi.com/gsas.harvard:11584.
Pełny tekst źródłaPhysics
Moore, Steven Alan. "Scanning Tunneling Microscopy and Spectroscopy Measurements of Superconductor/Ferromagnet Hybrids". Diss., Temple University Libraries, 2015. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/359662.
Pełny tekst źródłaPh.D.
The focus of this thesis work is the study of the nanoscale electronic properties of magnetically coupled superconductor/ferromagnet hybrid structures using low-temperature scanning tunneling microscopy and spectroscopy (LT-STM/STS) under ultra-high vacuum conditions. There are a number of novel effects that can occur due to the non-homogenous magnetic field from the ferromagnet, which directly influence the global and local superconducting properties. These effects include the generation of vortices/anti-vortices by the non-uniform magnetic stray field, local modulations in the critical temperature, filamentary superconductivity close to the transition temperature, and superconducting channels that can be controlled by external magnetic fields. Prior to this dissertation the subject of superconductor/ferromagnet hybrid structures has been mainly studied using global measurements (such as transport and magnetization) or scanning probe techniques that are sensitive to the magnetic field. Scanning tunneling microscopy probes the local electronic density of states with atomic resolution, and therefore is the only technique that can study the emergence of superconductivity on the length scale of the coherence length. The novel results presented in this dissertation show that magnetically coupled superconductor/ferromagnet heterostructures offer the possibility to control and tune the strength and location of superconductivity and superconducting vortices, which has potential for promising technological breakthroughs in computing and power applications.
Temple University--Theses
Tomic, Aleksandra T. "Scanning tunneling microscopy of complex electronic materials". Diss., Connect to online resource - MSU authorized users, 2008.
Znajdź pełny tekst źródłaTitle from PDF t.p. (viewed on Mar. 27, 2009) Includes bibliographical references (p. 95-102). Also issued in print.
Ji, Tao. "Inelastic electron tunneling spectroscopy in molecular electronic devices from first-principles". Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=96883.
Pełny tekst źródłaDans cette thèse, nous présentons des calculs ab initio de la spectroscopie à effet tunnel par électron inélastique (IETS)appliqués à des jonctions moléculaires. Dans le cadre d'une configuration électrode-molécule-électrode,la théorie de la fonctionnelle de la densité (DFT) est utilisée pour construire l'hamiltonien et les fonctions de Green hors-équilibres(NEGF) sont employées pour déterminer la densité électroniquedans des conditions hors-équilibre. Le cadrede la DFT-NEGF nous permet de calculer des quantités telles que la fonctionnelle d'énergie totale,les forces atomiques ainsi que la matrice de Hessian. L'approximationauto-consistante de Born (SCBA) est employée afin d'intégrer les vibrations moléculaires (phonons) dans le formalisme DFT-NEGF,une fois que le spectre des phonons et les vecteurs propres ont été calculés à partir de la matrice dynamique. Des méthodes d'optimisations géométriques sont aussi discutées en tant que part indispensable du formalisme,étant donné que la condition d'équilibre mécanique est essentielle afin de calculer correctement les propriétés des phonons du système.Afin de surmonter les difficultés numériques, particulièrement concernant la grande demandecomputationnelle requise pour le calcul du couplage électron-phonon, nous développons une approximation numérique pour la self-énergie associée aux phonons. De plus, en employant quelques hypothèses raisonables, nous dérivons une expression pour l'IETS calculée à partir de laseconde dérivée de la courbe I-V dans le butde réduire l'erreur associée à la différentiation numérique. L'utilisation de ces deux approximations diminuent grandement les exigences computationnelles et rendent les calculs possibles avec les capacités numériques actuelles.Comme application du formalisme DFT-NEGF-SCBA, nous calculons l'IETS de la jonction moléculaire or-octanedithiol(ODT)-or. La courbe I-V, la conductance et l'IETS obtenues par calculs ab initio sontdirectement comparées aux données expérimentales. Une compréhension microscopique du couplage électron-phonon pour une jonction moléculaire à effet tunnel est élaborée dans cet exemple. De plus, des comparaisons entre les jonctions ODT à hydrogène dissociatif et à hydrogène non-dissociatif ainsi queles différents comportements de transfert de charges sont présentés afin de montrer les effets de la formation du thiol dans la jonction moléculaire ODT.
Acharya, Danda Pani. "Atomic Manipulation and Tunneling Spectroscopy on Metal and Semiconductor Surfaces". View abstract, 2007. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:3292889.
Pełny tekst źródłaBuchsteiner, Philipp [Verfasser]. "Scanning Tunneling Spectroscopy of Rare Earth Hexaborides / Philipp Buchsteiner". Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2020. http://d-nb.info/1224100344/34.
Pełny tekst źródłaKersell, Heath R. "Alternative Excitation Methods in Scanning Tunneling Microscopy". Ohio University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1449074449.
Pełny tekst źródłaKsiążki na temat "Tunneling (Physics) Tunneling spectroscopy"
Osadʹko, I. S. Selektivnai︠a︡ spektroskopii︠a︡ odinochnykh molekul. Moskva: Fizmatlit, 2000.
Znajdź pełny tekst źródłaSvistunov, V. M. Tunnelʹnai͡a︡ spektroskopii͡a︡ kvazichastichnykh vozbuzhdeniĭ v metallakh. Kiev: Nauk. dumka, 1986.
Znajdź pełny tekst źródłaInternational Conference on Low Temperature Chemistry (3rd 1999 Nagoya University). 3rd International Conference on Low Temperature Chemistry: Quantum tunneling, quantum medium, low temperature reaction, matrix isolation ; July 26-30, 1999, Nagoya University, Japan. [Japan: s.n., 1999.
Znajdź pełny tekst źródłaInternational Conference on Scanning Tunneling Microscopy/Spectroscopy (4th 1989 Ōarai-machi, Japan). Proceedings of the Fourth International Conference on Scanning Tunneling Microscopy/Spectroscopy: 9-14 July 1989, Oarai Culture Center, Oarai, Ibaraki, Japan. Redaktorzy Ichinokawa Takeo 1926-, Ōyō Butsuri Gakkai i American Vacuum Society. New York: Published for the American Vacuum Society by the American Institute of Physics, 1990.
Znajdź pełny tekst źródłaInternational Conference on Scanning Tunneling Microscopy/Spectroscopy (5th 1990 Baltimore, Md.). Proceedings of the Fifth International Conference on Scanning Tunneling Microscopy/Spectroscopy and the First International Conference on Nanometer Scale Science and Technology, 23-27 July 1990, Hyatt Regency, Baltimore, Maryland, USA. Redaktorzy Colton Richard J, Marrian Christie R. K, Stroscio Joseph Anthony 1956-, American Vacuum Society i International Conference on Nanometer Scale Science and Technology (1st : 1990 : Baltimore, Md.). New York: Published for the American Vacuum Society by the American Institute of Physics, 1991.
Znajdź pełny tekst źródłaCzajka, Ryszard. Zastosowanie skaningowej mikroskopii i spektroskopii tunelowej do badania własności fizycznych układów mezoskopowych. Poznań: Wydawn. Politechniki Poznańskiej, 1997.
Znajdź pełny tekst źródłaPrinciples of electron tunneling spectroscopy. New York: Oxford University Press, 1985.
Znajdź pełny tekst źródłaWolf, E. L. Principles of electron tunneling spectroscopy. Wyd. 2. Oxford: Oxford University Press, 2012.
Znajdź pełny tekst źródłaGolʹdanskiĭ, V. I. Tunneling phenomena in chemical physics. New York: Gordon and Breach Science Publishers, 1989.
Znajdź pełny tekst źródłaCzęści książek na temat "Tunneling (Physics) Tunneling spectroscopy"
Salvan, F. "Scanning Tunneling Microscopy and Spectroscopy". W Springer Proceedings in Physics, 119–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-72967-6_11.
Pełny tekst źródłaReed, Mark A., John N. Randall, James H. Luscombe, William R. Frensley, Raj J. Aggarwal, Richard J. Matyi, Tom M. Moore i Anna E. Wetsel. "Quantum dot resonant tunneling spectroscopy". W Advances in Solid State Physics, 267–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/bfb0108017.
Pełny tekst źródłaZasadzinski, J. "Tunneling Spectroscopy of Conventional and Unconventional Superconductors". W The Physics of Superconductors, 591–646. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55675-3_8.
Pełny tekst źródłaTsukada, M., K. Kobayashi, H. Kageshima, N. Isshiki i S. Watanabe. "Computational Physics Approach to Scanning Tunneling Microscopy and Spectroscopy". W Springer Proceedings in Physics, 16–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84821-6_3.
Pełny tekst źródłaLuican-Mayer, Adina, i Eva Y. Andrei. "Probing Dirac Fermions in Graphene by Scanning Tunneling Microscopy and Spectroscopy". W Physics of Graphene, 29–63. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02633-6_2.
Pełny tekst źródłaGräfe, Stefanie, Volker Engel i Misha Yu Ivanov. "Attosecond Photoelectron Spectroscopy of Electron Tunneling in Dissociating Hydrogen Molecular Ion". W Springer Series in Chemical Physics, 57–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/978-3-540-95946-5_19.
Pełny tekst źródłaHamers, R. J., i R. H. Koch. "Scanning Tunneling Microscopy and Spectroscopy of Silicon Dangling Bond Defects". W The Physics and Chemistry of SiO2 and the Si-SiO2 Interface, 201–10. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4899-0774-5_22.
Pełny tekst źródłaKazama, A., H. Bando, Y. Miyahara, H. Enomoto i H. Ozaki. "Angle-resolved tunneling spectroscopy of Si conduction band using bonded Si(111) wafer pair". W Springer Proceedings in Physics, 144–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-59484-7_61.
Pełny tekst źródłaGovernale, M., i U. Zülicke. "Momentum-resolved tunneling: Spectroscopic tool and basis for device applications". W New Directions in Mesoscopic Physics (Towards Nanoscience), 269–79. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-007-1021-4_12.
Pełny tekst źródłaMaruyama, Y., T. Inabe, H. Mori, H. Yamochi i G. Saito. "Tunneling Spectroscopic Study of the Superconducting Gap of (BEDT-TTF)2Cu(NCS)2 Crystals". W Springer Proceedings in Physics, 163–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-75424-1_35.
Pełny tekst źródłaStreszczenia konferencji na temat "Tunneling (Physics) Tunneling spectroscopy"
Kato, T., T. Maruyama, T. Noguchi, T. Pyon i H. Sakata. "Tunneling Spectroscopy on Underdoped La2−xSrxCuO4". W LOW TEMPERATURE PHYSICS: 24th International Conference on Low Temperature Physics - LT24. AIP, 2006. http://dx.doi.org/10.1063/1.2354763.
Pełny tekst źródłaSaito, Ryo, Tetsuro Noguchi, Tesu Pyon, Takuya Kato i Hideaki Sakata. "Scanning Tunneling Microscopy and Spectroscopy on La1.68Nd0.2Sr0.12CuO4". W LOW TEMPERATURE PHYSICS: 24th International Conference on Low Temperature Physics - LT24. AIP, 2006. http://dx.doi.org/10.1063/1.2354767.
Pełny tekst źródłaKambara, H., Y. Niimi, K. Takizawa, H. Yaguchi, Y. Maeno i Hiroshi Fukuyama. "Scanning Tunneling Microscopy and Spectroscopy of Sr2RuO4". W LOW TEMPERATURE PHYSICS: 24th International Conference on Low Temperature Physics - LT24. AIP, 2006. http://dx.doi.org/10.1063/1.2354823.
Pełny tekst źródłaZakharov, Andrey, Martin Jourdan i Hermann Adrian. "Tunneling Spectroscopy On Epitaxial UNi2Al3 Thin Films". W LOW TEMPERATURE PHYSICS: 24th International Conference on Low Temperature Physics - LT24. AIP, 2006. http://dx.doi.org/10.1063/1.2354880.
Pełny tekst źródłaChapelier, C., W. Escoffier, B. Sacépé, J. C. Villégier i M. Sanquer. "Scanning Tunneling Spectroscopy on a Disordered Superconductor". W LOW TEMPERATURE PHYSICS: 24th International Conference on Low Temperature Physics - LT24. AIP, 2006. http://dx.doi.org/10.1063/1.2355031.
Pełny tekst źródłaKashiwaya, Hiromi, Kaori Ikeda, Bambang Prijamboedi, Satoshi Kashiwaya, Akira Sugimoto, Itaru Kurosawa i Yukio Tanaka. "Spin-polarized Tunneling Spectroscopy of YBCO/LSMO Tunnel Junction". W LOW TEMPERATURE PHYSICS: 24th International Conference on Low Temperature Physics - LT24. AIP, 2006. http://dx.doi.org/10.1063/1.2354985.
Pełny tekst źródłaMashima, Hideki, Noritaka Fukuo, Go Kinoda, Taro Hitosugi, Toshihiro Shimada, Takeshi Kondo, Yoshinori Okada, Hiroshi Ikuta, Yuji Matsumoto i Tetsuya Hasegawa. "Scanning Tunneling Microscopy/Spectroscopy of Heavily Overdoped Bi2Sr2CuOy Single Crystals". W LOW TEMPERATURE PHYSICS: 24th International Conference on Low Temperature Physics - LT24. AIP, 2006. http://dx.doi.org/10.1063/1.2354808.
Pełny tekst źródłaBae, Myung-Ho, Jae-Hyun Choi i Hu-Jong Lee. "Heating-free Interlayer Tunneling Spectroscopy in Bi2Sr2CaCu2O8+x Intrinsic Junctions". W LOW TEMPERATURE PHYSICS: 24th International Conference on Low Temperature Physics - LT24. AIP, 2006. http://dx.doi.org/10.1063/1.2355004.
Pełny tekst źródłaChand, Madhavi, Anand Kamlapure, Garima Saraswat, Sanjeev Kumar, John Jesudasan, Mintu Mondal, Vivas Bagwe i in. "Study of Pseudogap State in NbN using Scanning Tunneling Spectroscopy". W SOLID STATE PHYSICS, PROCEEDINGS OF THE 55TH DAE SOLID STATE PHYSICS SYMPOSIUM 2010. AIP, 2011. http://dx.doi.org/10.1063/1.3605742.
Pełny tekst źródłaPoonia, Monika, V. Manjuladevi i Raj Kumar Gupta. "Scanning tunneling spectroscopy of thin films of carbon nanotubes". W PROCEEDING OF INTERNATIONAL CONFERENCE ON RECENT TRENDS IN APPLIED PHYSICS AND MATERIAL SCIENCE: RAM 2013. AIP, 2013. http://dx.doi.org/10.1063/1.4810155.
Pełny tekst źródłaRaporty organizacyjne na temat "Tunneling (Physics) Tunneling spectroscopy"
First, Phillip N., Robert L. Whetten i T. Gregory Schaaff. Quantitative tunneling spectroscopy of nanocrystals. Office of Scientific and Technical Information (OSTI), maj 2007. http://dx.doi.org/10.2172/1057556.
Pełny tekst źródłaColeman, R. V. Surface structure and analysis with scanning tunneling microscopy and electron tunneling spectroscopy. Office of Scientific and Technical Information (OSTI), styczeń 1992. http://dx.doi.org/10.2172/6017304.
Pełny tekst źródłaColeman, R. V. Surface structure and analysis with scanning tunneling microscopy and electron tunneling spectroscopy. Office of Scientific and Technical Information (OSTI), styczeń 1992. http://dx.doi.org/10.2172/5879901.
Pełny tekst źródłaZasadzinski, J., L. Ozyuzer, Z. Yusof, J. Chen, K. E. Gray, R. Mogilevsky, D. G. Hinks, J. L. Cobb i J. T. Markert. Quasiparticle tunneling spectroscopy of high {Tc} cuprates. Office of Scientific and Technical Information (OSTI), kwiecień 1996. http://dx.doi.org/10.2172/226043.
Pełny tekst źródłaLikharev, Konstantin K. Tunneling Spectroscopy of Ultrasmall Clusters and Grains. Fort Belvoir, VA: Defense Technical Information Center, sierpień 1995. http://dx.doi.org/10.21236/ada299096.
Pełny tekst źródłaHamers, R. J. Methods of Tunneling Spectroscopy With the STM. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 1993. http://dx.doi.org/10.21236/ada266507.
Pełny tekst źródłaUkraintsev, Vladimir A. New Data Evaluation Technique for Electron Tunneling Spectroscopy. Fort Belvoir, VA: Defense Technical Information Center, lipiec 1995. http://dx.doi.org/10.21236/ada296960.
Pełny tekst źródłaColeman, R. V. Surface structure and analysis with scanning tunneling microscopy and electron tunneling spectroscopy. Progress report, May 1, 1987--April 30, 1992. Office of Scientific and Technical Information (OSTI), marzec 1992. http://dx.doi.org/10.2172/10122024.
Pełny tekst źródłaColeman, R. V. Surface structure and analysis with scanning tunneling microscopy and electron tunneling spectroscopy. Progress report, May 1, 1991--April 30, 1992. Office of Scientific and Technical Information (OSTI), marzec 1992. http://dx.doi.org/10.2172/10122074.
Pełny tekst źródłaMears, C. A., S. E. Labov, M. Frank i H. Netel. Hot-Electron Tunneling sensors for high-resolution x-ray and gamma-ray spectroscopy. Office of Scientific and Technical Information (OSTI), luty 1997. http://dx.doi.org/10.2172/513595.
Pełny tekst źródła