Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Tunnel FETs.

Artykuły w czasopismach na temat „Tunnel FETs”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Tunnel FETs”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Lind, Erik, Elvedin Memisevic, Anil W. Dey i Lars-Erik Wernersson. "III-V Heterostructure Nanowire Tunnel FETs". IEEE Journal of the Electron Devices Society 3, nr 3 (maj 2015): 96–102. http://dx.doi.org/10.1109/jeds.2015.2388811.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Pandey, Rahul, Saurabh Mookerjea i Suman Datta. "Opportunities and Challenges of Tunnel FETs". IEEE Transactions on Circuits and Systems I: Regular Papers 63, nr 12 (grudzień 2016): 2128–38. http://dx.doi.org/10.1109/tcsi.2016.2614698.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Sedighi, Behnam, Xiaobo Sharon Hu, Huichu Liu, Joseph J. Nahas i Michael Niemier. "Analog Circuit Design Using Tunnel-FETs". IEEE Transactions on Circuits and Systems I: Regular Papers 62, nr 1 (styczeń 2015): 39–48. http://dx.doi.org/10.1109/tcsi.2014.2342371.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Moselund, K. E., H. Schmid, C. Bessire, M. T. Bjork, H. Ghoneim i H. Riel. "InAs–Si Nanowire Heterojunction Tunnel FETs". IEEE Electron Device Letters 33, nr 10 (październik 2012): 1453–55. http://dx.doi.org/10.1109/led.2012.2206789.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Ortiz-Conde, Adelmo, Francisco J. García-Sánchez, Juan Muci, Andrea Sucre-González, João Antonio Martino, Paula Ghedini Der Agopian i Cor Claeys. "Threshold voltage extraction in Tunnel FETs". Solid-State Electronics 93 (marzec 2014): 49–55. http://dx.doi.org/10.1016/j.sse.2013.12.010.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Wu, Jianzhi, Jie Min i Yuan Taur. "Short-Channel Effects in Tunnel FETs". IEEE Transactions on Electron Devices 62, nr 9 (wrzesień 2015): 3019–24. http://dx.doi.org/10.1109/ted.2015.2458977.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Verhulst, Anne S., William G. Vandenberghe, Karen Maex, Stefan De Gendt, Marc M. Heyns i Guido Groeseneken. "Complementary Silicon-Based Heterostructure Tunnel-FETs With High Tunnel Rates". IEEE Electron Device Letters 29, nr 12 (grudzień 2008): 1398–401. http://dx.doi.org/10.1109/led.2008.2007599.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Huang, Jun Z., Pengyu Long, Michael Povolotskyi, Gerhard Klimeck i Mark J. W. Rodwell. "P-Type Tunnel FETs With Triple Heterojunctions". IEEE Journal of the Electron Devices Society 4, nr 6 (listopad 2016): 410–15. http://dx.doi.org/10.1109/jeds.2016.2614915.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Avedillo, M. J., i J. Núñez. "Improving speed of tunnel FETs logic circuits". Electronics Letters 51, nr 21 (październik 2015): 1702–4. http://dx.doi.org/10.1049/el.2015.2416.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Pandey, Rahul, Bijesh Rajamohanan, Huichu Liu, Vijaykrishnan Narayanan i Suman Datta. "Electrical Noise in Heterojunction Interband Tunnel FETs". IEEE Transactions on Electron Devices 61, nr 2 (luty 2014): 552–60. http://dx.doi.org/10.1109/ted.2013.2293497.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Dayeh, Shadi A., i S. Tom Picraux. "Axial Ge/Si Nanowire Heterostructure Tunnel FETs". ECS Transactions 33, nr 6 (17.12.2019): 373–78. http://dx.doi.org/10.1149/1.3487568.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Richter, S., S. Blaeser, L. Knoll, S. Trellenkamp, A. Fox, A. Schäfer, J. M. Hartmann, Q. T. Zhao i S. Mantl. "Silicon–germanium nanowire tunnel-FETs with homo- and heterostructure tunnel junctions". Solid-State Electronics 98 (sierpień 2014): 75–80. http://dx.doi.org/10.1016/j.sse.2014.04.014.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Gudlavalleti, R. H., B. Saman, R. Mays, M. Lingalugari, E. Heller, J. Chandy i F. Jain. "Modeling of Multi-State Si and Ge Cladded Quantum Dot Gate FETs Using Verilog and ABM Simulations". International Journal of High Speed Electronics and Systems 28, nr 03n04 (wrzesień 2019): 1940026. http://dx.doi.org/10.1142/s0129156419400263.

Pełny tekst źródła
Streszczenie:
Quantum dot gate (QDG) field-effect transistors (FETs) fabricated using Si and Ge quantum dot layers, self-assembled in the gate region over the tunnel oxide, have exhibited 3- and 4-state behavior applicable for ternary and quaternary logic, respectively. This paper presents simulation of QDG-FETs comprising mixed Ge and Si quantum dot layers over tunnel oxide using an analog behavior model (ABM) and Verilog model. The simulations reproduce the experimental I-V characteristics of a fabricated mixed dot QDG-FET. GeOx-cladded Ge quantum dot layer is in interface to the tunnel oxide and is deposited over with a SiOx-cladded Si quantum dot layer. The fabricated QDG-FET has one source and one gate. The ABM simulation models QDG-FET using conventional BSIM 3V3 FETs with capacitances and other device parameters. In addition, VERILOG model is presented. The agreement in circuit and quantum simulations and experimental data will further advance in the designing of QDG-FET-based analog-to-digital converters (ADCs), 2-bit logic gates and SRAM cells.
Style APA, Harvard, Vancouver, ISO itp.
14

Aghanejad Ahmadchally, Alireza, i Morteza Gholipour. "Investigation of 6-armchair graphene nanoribbon tunnel FETs". Journal of Computational Electronics 20, nr 3 (6.05.2021): 1114–24. http://dx.doi.org/10.1007/s10825-021-01709-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Zhang, Qin, Yeqing Lu, Curt A. Richter, Debdeep Jena i Alan Seabaugh. "Optimum Bandgap and Supply Voltage in Tunnel FETs". IEEE Transactions on Electron Devices 61, nr 8 (sierpień 2014): 2719–24. http://dx.doi.org/10.1109/ted.2014.2330805.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Ilatikhameneh, Hesameddin, Gerhard Klimeck i Rajib Rahman. "Can Homojunction Tunnel FETs Scale Below 10 nm?" IEEE Electron Device Letters 37, nr 1 (styczeń 2016): 115–18. http://dx.doi.org/10.1109/led.2015.2501820.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Chen, Hongwei, Li Yuan, Qi Zhou, Chunhua Zhou i Kevin J. Chen. "Normally-off AlGaN/GaN power tunnel-junction FETs". physica status solidi (c) 9, nr 3-4 (3.02.2012): 871–74. http://dx.doi.org/10.1002/pssc.201100338.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Pala, Marco G., i David Esseni. "Interface Traps in InAs Nanowire Tunnel-FETs and MOSFETs—Part I: Model Description and Single Trap Analysis in Tunnel-FETs". IEEE Transactions on Electron Devices 60, nr 9 (wrzesień 2013): 2795–801. http://dx.doi.org/10.1109/ted.2013.2274196.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

KARMAKAR, SUPRIYA, JOHN A. CHANDY i FAQUIR C. JAIN. "APPLICATION OF 25 NM QUANTUM DOT GATE FETs TO THE DESIGN OF ADC AND DAC CIRCUITS". International Journal of High Speed Electronics and Systems 20, nr 03 (wrzesień 2011): 653–68. http://dx.doi.org/10.1142/s0129156411006945.

Pełny tekst źródła
Streszczenie:
This paper describes design of analog-to-digital converters (ADCs) and digital-to-analog onverters (DACs) using field-effect transistors that exhibit three states in their transfer characteristics. An intermediate state " i " has been observed in the transfer characteristics (drain current-gate voltage) of FETs when two layers of cladded quantum dots (e.g. SiO x - Si and GeO x - Ge ) are introduced in the gate region above the tunnel insulator between the source and drain regions. Three states in such a transistor, defined as quantum dot gate field-effect transistor (QDG-FET) include two stable states (ON and OFF) and a low-current saturation state " i " in its transfer characteristics. QDG-FETs are quite different in construction than nanodot based nonvolatile memories, reported in the literature, where the quantum dots are sandwiched between a tunnel gate insulator and a relatively thick control gate dielectric. In this paper we present analog-to-digital converters (ADCs) using comparators based on QDG-FETs. A comparator is designed with fewer three-state QDG-FETs. Designs of 3-bit ADC, using 25 nm QDG-FETs, are simulated showing a signal-to-noise ratio (SNR) of ~18. In addition, the R-2R ladder problem, encountered in conventional analog-to digital converters (ADCs), is absent in QDG-FET based architecture.
Style APA, Harvard, Vancouver, ISO itp.
20

Chen, Yi-Ju, i Bing-Yue Tsui. "Bandgap engineering of Si1− x Ge x epitaxial tunnel layer for tunnel FETs". Japanese Journal of Applied Physics 57, nr 8 (13.07.2018): 084201. http://dx.doi.org/10.7567/jjap.57.084201.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Zhao, Q. T., S. Richter, L. Knoll, G. V. Luong, S. Blaeser, C. Schulte-Braucks, A. Schafer, S. Trellenkamp, D. Buca i S. Mantl. "(Invited) Si Nanowire Tunnel FETs for Energy Efficient Nanoelectronics". ECS Transactions 66, nr 4 (15.05.2015): 69–78. http://dx.doi.org/10.1149/06604.0069ecst.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Mallik, A. "Tunnel FETs for Mixed-Signal System-On-Chip Applications". ECS Transactions 53, nr 5 (2.05.2013): 93–104. http://dx.doi.org/10.1149/05305.0093ecst.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Conzatti, F., M. G. Pala i D. Esseni. "Surface-Roughness-Induced Variability in Nanowire InAs Tunnel FETs". IEEE Electron Device Letters 33, nr 6 (czerwiec 2012): 806–8. http://dx.doi.org/10.1109/led.2012.2192091.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Jiang, Zhi, Yiqi Zhuang, Cong Li, Ping Wang i Yuqi Liu. "Vertical-dual-source tunnel FETs with steeper subthreshold swing". Journal of Semiconductors 37, nr 9 (wrzesień 2016): 094003. http://dx.doi.org/10.1088/1674-4926/37/9/094003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Fiore, Antonio, Jacopo Franco, Moonju Cho, Felice Crupi, Sebastiano Strangio, Philippe J. Roussel, Rita Rooyackers, Nadine Collaert i Dimitri Linten. "Single Defect Discharge Events in Vertical-Nanowire Tunnel-FETs". IEEE Transactions on Device and Materials Reliability 17, nr 1 (marzec 2017): 253–58. http://dx.doi.org/10.1109/tdmr.2017.2655623.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Conzatti, F., M. G. Pala, D. Esseni, E. Bano i L. Selmi. "Strain-Induced Performance Improvements in InAs Nanowire Tunnel FETs". IEEE Transactions on Electron Devices 59, nr 8 (sierpień 2012): 2085–92. http://dx.doi.org/10.1109/ted.2012.2200253.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Zhang, Lining, Xinnan Lin, Jin He i Mansun Chan. "An Analytical Charge Model for Double-Gate Tunnel FETs". IEEE Transactions on Electron Devices 59, nr 12 (grudzień 2012): 3217–23. http://dx.doi.org/10.1109/ted.2012.2217145.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Gupta, Sumeet Kumar, Jaydeep P. Kulkarni, Suman Datta i Kaushik Roy. "Heterojunction Intra-Band Tunnel FETs for Low-Voltage SRAMs". IEEE Transactions on Electron Devices 59, nr 12 (grudzień 2012): 3533–42. http://dx.doi.org/10.1109/ted.2012.2221127.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Boucart, Kathy, i Adrian Mihai Ionescu. "A new definition of threshold voltage in Tunnel FETs". Solid-State Electronics 52, nr 9 (wrzesień 2008): 1318–23. http://dx.doi.org/10.1016/j.sse.2008.04.003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Najmzadeh, M., K. Boucart, W. Riess i A. M. Ionescu. "Asymmetrically strained all-silicon multi-gate n-Tunnel FETs". Solid-State Electronics 54, nr 9 (wrzesień 2010): 935–41. http://dx.doi.org/10.1016/j.sse.2010.04.037.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Hutin, L., R. P. Oeflein, J. Borrel, S. Martinie, C. Tabone, C. Le Royer i M. Vinet. "Investigation of ambipolar signature in SiGeOI homojunction tunnel FETs". Solid-State Electronics 115 (styczeń 2016): 160–66. http://dx.doi.org/10.1016/j.sse.2015.08.007.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Ding, Lili, Elena Gnani, Simone Gerardin, Marta Bagatin, Francesco Driussi, Pierpaolo Palestri, Luca Selmi, Cyrille Le Royer i Alessandro Paccagnella. "Total Ionizing Dose Effects in Si-Based Tunnel FETs". IEEE Transactions on Nuclear Science 61, nr 6 (grudzień 2014): 2874–80. http://dx.doi.org/10.1109/tns.2014.2367548.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Dong, Yunpeng, Lining Zhang, Xiangbin Li, Xinnan Lin i Mansun Chan. "A Compact Model for Double-Gate Heterojunction Tunnel FETs". IEEE Transactions on Electron Devices 63, nr 11 (listopad 2016): 4506–13. http://dx.doi.org/10.1109/ted.2016.2604001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Huang, Jun Z., Pengyu Long, Michael Povolotskyi, Gerhard Klimeck i Mark J. W. Rodwell. "Scalable GaSb/InAs Tunnel FETs With Nonuniform Body Thickness". IEEE Transactions on Electron Devices 64, nr 1 (styczeń 2017): 96–101. http://dx.doi.org/10.1109/ted.2016.2624744.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Mori, Yoshiaki, Shingo Sato, Yasuhisa Omura, Avik Chattopadhyay i Abhijit Mallik. "On the definition of threshold voltage for tunnel FETs". Superlattices and Microstructures 107 (lipiec 2017): 17–27. http://dx.doi.org/10.1016/j.spmi.2017.04.002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Panda, Subhrasmita, Sidhartha Dash i Guru Prasad Mishra. "Extensive electrostatic investigation of workfunction-modulated SOI tunnel FETs". Journal of Computational Electronics 15, nr 4 (4.10.2016): 1326–33. http://dx.doi.org/10.1007/s10825-016-0907-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Roy, T., Z. R. Hesabi, C. A. Joiner, A. Fujimoto i E. M. Vogel. "Barrier engineering for double layer CVD graphene tunnel FETs". Microelectronic Engineering 109 (wrzesień 2013): 117–19. http://dx.doi.org/10.1016/j.mee.2013.02.090.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Chen, Yi-Hsuan, William Cheng-Yu Ma, Jer-Yi Lin, Chun-Yen Lin, Po-Yang Hsu, Chi-Yuan Huang i Tien-Sheng Chao. "Impact of Crystallization Method on Poly-Si Tunnel FETs". IEEE Electron Device Letters 36, nr 10 (październik 2015): 1060–62. http://dx.doi.org/10.1109/led.2015.2468060.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Dharmireddy, Ajay Kumar, Dr Sreenivasa Rao Ijjada i Dr I. Hema Latha. "Performance Analysis of Various Fin Patterns of Hybrid Tunnel FET". International Journal of Electrical and Electronics Research 10, nr 4 (30.12.2022): 806–10. http://dx.doi.org/10.37391/ijeer.100407.

Pełny tekst źródła
Streszczenie:
High speed and low power dissipation devices are expected from future generation technology of Nano-electronic devices. Tunnel field effect transistor (TFET) technology is unique to the prominent devices in low power applications. To minimize leakage currents, the tunnel switching technology of TFETs is superior to conventional MOS FETs. The gate coverage area of different fin shape hybrid tunnel field-effect transistors is more impacted on electric characteristics of drive current, leakage current and subthreshold slope. In this paper design various fin patterns of hybrid TFET devices and shows on better performance as compared with other fin shape hybrid tunnel FET. The TCAD simulation tool is used to determine the characteristics of different fin shape tunnel FET.
Style APA, Harvard, Vancouver, ISO itp.
40

Xu, Hui Fang, Yue Hua Dai, Bang Gui Guan i Yong Feng Zhang. "Two-dimensional analytical model for asymmetric dual-gate tunnel FETs". Japanese Journal of Applied Physics 56, nr 1 (5.12.2016): 014301. http://dx.doi.org/10.7567/jjap.56.014301.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Tomioka, K., T. Fukui i J. Motohisa. "(Invited) Vertical Tunnel FETs Using III-V Nanowire/Si Heterojunctions". ECS Transactions 69, nr 10 (2.10.2015): 109–18. http://dx.doi.org/10.1149/06910.0109ecst.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Wang, Hao, Sheng Chang, Jin He, Qijun Huang i Feng Liu. "The Dual Effects of Gate Dielectric Constant in Tunnel FETs". IEEE Journal of the Electron Devices Society 4, nr 6 (listopad 2016): 445–50. http://dx.doi.org/10.1109/jeds.2016.2610478.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Tomioka, K., i T. Fukui. "(Invited) Vertical Tunnel FETs Using III-V Nanowire/Si Heterojunctions". ECS Transactions 61, nr 3 (26.03.2014): 81–89. http://dx.doi.org/10.1149/06103.0081ecst.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Kim, Jang Hyun, Sang Wan Kim, Hyun Woo Kim i Byung‐Gook Park. "Vertical type double gate tunnelling FETs with thin tunnel barrier". Electronics Letters 51, nr 9 (kwiecień 2015): 718–20. http://dx.doi.org/10.1049/el.2014.3864.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Chen, Cheng, Qianqian Huang, Jiadi Zhu, Yang Zhao, Lingyi Guo i Ru Huang. "New Understanding of Random Telegraph Noise Amplitude in Tunnel FETs". IEEE Transactions on Electron Devices 64, nr 8 (sierpień 2017): 3324–30. http://dx.doi.org/10.1109/ted.2017.2712714.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Ahmed, Sheikh Z., Daniel S. Truesdell, Yaohua Tan, Benton H. Calhoun i Avik W. Ghosh. "A comprehensive analysis of Auger generation impacted planar Tunnel FETs". Solid-State Electronics 169 (lipiec 2020): 107782. http://dx.doi.org/10.1016/j.sse.2020.107782.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Zhang, Lining, i Mansun Chan. "SPICE Modeling of Double-Gate Tunnel-FETs Including Channel Transports". IEEE Transactions on Electron Devices 61, nr 2 (luty 2014): 300–307. http://dx.doi.org/10.1109/ted.2013.2295237.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Gholizadeh, Mahdi, i Seyed Ebrahim Hosseini. "A 2-D Analytical Model for Double-Gate Tunnel FETs". IEEE Transactions on Electron Devices 61, nr 5 (maj 2014): 1494–500. http://dx.doi.org/10.1109/ted.2014.2313037.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Ghosh, Krishnendu, i Uttam Singisetti. "RF Performance and Avalanche Breakdown Analysis of InN Tunnel FETs". IEEE Transactions on Electron Devices 61, nr 10 (październik 2014): 3405–10. http://dx.doi.org/10.1109/ted.2014.2344914.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Taur, Yuan, Jianzhi Wu i Jie Min. "An Analytic Model for Heterojunction Tunnel FETs With Exponential Barrier". IEEE Transactions on Electron Devices 62, nr 5 (maj 2015): 1399–404. http://dx.doi.org/10.1109/ted.2015.2407695.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii