Gotowa bibliografia na temat „TRNA Function”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „TRNA Function”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "TRNA Function"
Mangroo, Dev, Xin-Qi Wu i Uttam L. Rajbhandary. "Escherichia coliinitiator tRNA: structure–function relationships and interactions with the translational machinery". Biochemistry and Cell Biology 73, nr 11-12 (1.12.1995): 1023–31. http://dx.doi.org/10.1139/o95-109.
Pełny tekst źródłaSchaffer, Ashleigh E., Otis Pinkard i Jeffery M. Coller. "tRNA Metabolism and Neurodevelopmental Disorders". Annual Review of Genomics and Human Genetics 20, nr 1 (31.08.2019): 359–87. http://dx.doi.org/10.1146/annurev-genom-083118-015334.
Pełny tekst źródłaFrancis, M. A., i U. L. Rajbhandary. "Expression and function of a human initiator tRNA gene in the yeast Saccharomyces cerevisiae". Molecular and Cellular Biology 10, nr 9 (wrzesień 1990): 4486–94. http://dx.doi.org/10.1128/mcb.10.9.4486-4494.1990.
Pełny tekst źródłaFrancis, M. A., i U. L. Rajbhandary. "Expression and function of a human initiator tRNA gene in the yeast Saccharomyces cerevisiae." Molecular and Cellular Biology 10, nr 9 (wrzesień 1990): 4486–94. http://dx.doi.org/10.1128/mcb.10.9.4486.
Pełny tekst źródłavon Pawel-Rammingen, U., S. Aström i A. S. Byström. "Mutational analysis of conserved positions potentially important for initiator tRNA function in Saccharomyces cerevisiae". Molecular and Cellular Biology 12, nr 4 (kwiecień 1992): 1432–42. http://dx.doi.org/10.1128/mcb.12.4.1432-1442.1992.
Pełny tekst źródłavon Pawel-Rammingen, U., S. Aström i A. S. Byström. "Mutational analysis of conserved positions potentially important for initiator tRNA function in Saccharomyces cerevisiae." Molecular and Cellular Biology 12, nr 4 (kwiecień 1992): 1432–42. http://dx.doi.org/10.1128/mcb.12.4.1432.
Pełny tekst źródłaStrobel, M. C., i J. Abelson. "Effect of intron mutations on processing and function of Saccharomyces cerevisiae SUP53 tRNA in vitro and in vivo". Molecular and Cellular Biology 6, nr 7 (lipiec 1986): 2663–73. http://dx.doi.org/10.1128/mcb.6.7.2663-2673.1986.
Pełny tekst źródłaStrobel, M. C., i J. Abelson. "Effect of intron mutations on processing and function of Saccharomyces cerevisiae SUP53 tRNA in vitro and in vivo." Molecular and Cellular Biology 6, nr 7 (lipiec 1986): 2663–73. http://dx.doi.org/10.1128/mcb.6.7.2663.
Pełny tekst źródłaOberbauer, Vera, i Matthias Schaefer. "tRNA-Derived Small RNAs: Biogenesis, Modification, Function and Potential Impact on Human Disease Development". Genes 9, nr 12 (5.12.2018): 607. http://dx.doi.org/10.3390/genes9120607.
Pełny tekst źródłaTucker, Jessica M., Aaron M. Schaller, Ian Willis i Britt A. Glaunsinger. "Alteration of the Premature tRNA Landscape by Gammaherpesvirus Infection". mBio 11, nr 6 (15.12.2020): e02664-20. http://dx.doi.org/10.1128/mbio.02664-20.
Pełny tekst źródłaRozprawy doktorskie na temat "TRNA Function"
Boonyalai, Nonlawat. "Lysyl-tRNA synthetase : structure-function studies". Thesis, Imperial College London, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.429379.
Pełny tekst źródłaKelly, Paul Michael. "Characterizing the Function of Alanyl-tRNA Synthetase Activity in Microbial Translation". The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1586259003806337.
Pełny tekst źródłaDhungel, Nripesh. "tRNA Splicing Endonuclease: Novel and Essential Function Beyond tRNA Splicing and Subunit interactions". The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1337968400.
Pełny tekst źródłaSwinehart, William E. Jr. "A Biochemical Investigation of Saccharomyces cerevisiae Trm10 and Implications of 1-methylguanosine for tRNA Structure and Function". The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1429867956.
Pełny tekst źródłaRogers, Theresa Elizabeth. "Elucidating the Function of a Pseudo-tRNA in Bacillus cereus". The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1291213318.
Pełny tekst źródłaFaruggio, Dawn C. (Dawn Catherine) 1965. "Stucture-function relationships of human initiator tRNA mutants and attempted regulated expresion of tRNA genes in yeast". Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/32665.
Pełny tekst źródłaPicchioni, Daria. "Biological function of SLIMP, a mitochondrial seryl-tRNA synthetase paralog". Doctoral thesis, Universitat de Barcelona, 2014. http://hdl.handle.net/10803/283974.
Pełny tekst źródłaEl nostre grup de recerca es centra en la traducció de proteïnes i més específicament en el mecanisme d’aminoacilació dels àcids ribonucleics (ARNs) de transferència (ARNt) per una família d’enzims essencials i universals anomenats aminoacil-ARNt sintetases (aaRSs). Al laboratori s’han analitzat el paper de les aaRSs en la traducció proteica, les seves funcions no canòniques, la seva evolució, així com la seva implicació en malalties humanes. Les aaRSs són components universals i essencials del codi genètic. La seva llarga historia evolutiva explica el creixent número de funcions que s’estan descobrint, tant per a elles com per a proteïnes paràlogues, més enllà del seu paper canònic en traducció genètica. Al laboratori, durant el procés d’obtenció d’un model a Drosophila melanogaster per a l’estudi de malalties humanes degudes a deficiències en l’aminoacilació d’ARNt, es va identificar un nou gen, paràlog de la seril-ARNt sintetasa (SeRS) mitocondrial, anomenat SLIMP. La proteïna SLIMP representa un nou tipus de proteïna similar a aaRS que ha adquirit una funció essencial a insectes, tot i la relativament baixa divergència respecta a una estructura d’SeRS canònica. Tot i amb això, són necessaris estudis addicionals per a identificar el paper biològic de SLIMP. Per aconseguir aquesta fita, s’ha portat a terme el projecte descrit en aquest manuscrit, el qual consisteix en anàlisis addicionals del fenotip resultant de la depleció de SLIMP in vivo, seguits d’estudis detallats de les interaccions moleculars amb àcids nucleics i proteïnes, per acabar amb un estudi dels efectes de SLIMP en la fisiologia cel•lular. En conjunt, els nostres resultats demostren que SLIMP s’uneix específicament a ARNs mitocondrials in vivo i in vitro. SLIMP interacciona amb SerRS2 i les dues són interdependents a nivell d’estabilitat proteica. La depleció de SLIMP o de SerRS2 redueix els nivells basals d’alguns ARNm mitocondrials, però la transcripció d’ARNt és manté inalterada. Es proposa un rol en la regulació post-transcripcional o en l’estabilitat dels ARNm madurs. Hem observat també que la depleció de SLIMP indueix l’aturada del cicle cel•lular en la transició G2/M. Aquests resultats suggereixen que SLIMP, o una conseqüència de la seva funció, podria tenir un paper d’enllaç entre els mitocondris i els factors de transcripció nuclears que regulen la proliferació cel•lular.
Cacan, Ercan. "Evolutionary synthetic biology: structure/function relationships within the protein translation system". Thesis, Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/45838.
Pełny tekst źródłaMirando, Adam Christopher. "Characterization Of A Non-Canonical Function For Threonyl-Trna Synthetase In Angiogenesis". ScholarWorks @ UVM, 2015. http://scholarworks.uvm.edu/graddis/523.
Pełny tekst źródłaKubicek, Charles E. 1981. "Identifying targets and function of the ubiquitin related modifier Urm1 in Saccharomyces cerevisiae". Thesis, University of Oregon, 2009. http://hdl.handle.net/1794/10310.
Pełny tekst źródłaPost-translational modification of proteins is an important cellular method of controlling various aspects of protein activity, including protein-protein interactions, half- life, and transport. An important class of post-translational modifications involves the ubiquitin family of proteins. In these modifications, a small protein, such as ubiquitin, is conjugated to a target protein through an isopeptide bond. Conjugation by a ubiquitin family member acts as a signal to regulate the activity, function, or stability of the target protein. Urm1, a ubiquitin-like protein conserved throughout all eukaryotes, was initially identified in S. cerevisiae. Loss of Urm1 leads to the disruption of a variety of cellular processes, including oxidative stress response, filamentous growth, and temperature sensitivity. This body of work comprises efforts to identify novel targets of Urm1, the mechanism by which Urm1 is attached to target proteins, and the physiological consequences of such conjugation. To gain understanding of the function and mechanism of Urm1 conjugation, the only known conjugate of Urm1, the peroxiredoxin reductase Ahp1, was examined in an effort to identify the site of modification on Ahp1 and to evaluate the physiological consequences of urmylation of Ahp1. I then completed a series of screens--a synthetic lethal screen, a two-hybrid screen, and a protein over-expression screen--to identify novel Urm1 conjugates and cellular functions dependent on Urm1. Of particular interest were genes identified in the synthetic lethal screen, namely PTC1, which encodes a protein phosphatase, and a set of genes encoding the Elongator complex, which functions in transcriptional elongation and tRNA modification. During this time period, other groups showed that thiolation of tRNAs depends on Urm1. Thus, Urm1 does not function only in protein conjugation, but also as a sulfur carrier in the thiolation of tRNA. Interestingly, I identified Elp2, a component of the Elongator complex, as a new Urm1-conjugate. Because Elp2 is also required for tRNA modification, perhaps Urm1 plays more than one role in tRNA modification. Loss of tRNA modification may disrupt many cellular functions and could explain the variety of urm1 mutant phenotypes. I have determined that all known Urm1 dependent processes are also associated with tRNA modification.
Committee in charge: Karen Guillemin, Chairperson, Biology; George Sprague, Advisor, Biology; Alice Barkan, Member, Biology; Kenneth Prehoda, Member, Chemistry; Tom Stevens, Outside Member, Chemistry
Książki na temat "TRNA Function"
Dieter, Söll, i RajBhandary Uttam, red. tRNA: Structure, biosynthesis, and function. Washington, D.C: ASM Press, 1995.
Znajdź pełny tekst źródłaKnoll, Franz, i Thomas Vogel. Design for Robustness. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2009. http://dx.doi.org/10.2749/sed011.
Pełny tekst źródłaSoll, Dieter. Trna: Structure, Biosynthesis, and Function. ASM Press, 1995.
Znajdź pełny tekst źródłaSoll, Dieter, i Uttam L. RajBhandary. TRNA: Structure, Biosynthesis, and Function. Wiley & Sons, Limited, John, 2014.
Znajdź pełny tekst źródłaDivan, Aysha, i Janice A. Royds. 3. RNA. Oxford University Press, 2016. http://dx.doi.org/10.1093/actrade/9780198723882.003.0003.
Pełny tekst źródłaShen, Wenyan *. Studies of the structure and function of "Bacillus subtilis" tRNAs in "Escherichia coli". 1991.
Znajdź pełny tekst źródłaSchreiner, Helen Carol. Replication control in broad-host-range plasmid RK2: Kil and kor functions affect expression of the essential replication gene trfA. 1988.
Znajdź pełny tekst źródłaSedel, Frédéric, i Carla E. M. Hollak. Disorders of Thiamine Metabolism. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199972135.003.0028.
Pełny tekst źródłaCzęści książek na temat "TRNA Function"
Martin, Nancy C. "Organellar tRNAs: Biosynthesis and Function". W tRNA, 127–40. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555818333.ch9.
Pełny tekst źródłaBjörk, Glenn R. "Biosynthesis and Function of Modified Nucleosides". W tRNA, 165–205. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555818333.ch11.
Pełny tekst źródłaMeinnel, Thierry, Yves Mechulam i Sylvain Blanquet. "Aminoacyl-tRNA Synthetases: Occurrence, Structure, and Function". W tRNA, 251–92. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555818333.ch14.
Pełny tekst źródłaBaron, Christian, i August Böck. "The Selenocysteine-Inserting tRNA Species: Structure and Function". W tRNA, 529–44. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555818333.ch26.
Pełny tekst źródłaSherman, Joyce M., M. John Rogers i Dieter Söll. "Recognition in the Glutamine tRNA System: from Structure to Function". W tRNA, 395–409. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555818333.ch19.
Pełny tekst źródłaSchuster, Jens, i Mario Mörl. "Mitochondrial tRNA editing". W Mitochondrial Function and Biogenesis, 81–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/b95713.
Pełny tekst źródłaMaréchal-Drouard, L., P. Guillemaut, H. Pfitzingzer i J. H. Weil. "Chloroplast tRNAs and tRNA genes: structure and function". W The Translational Apparatus of Photosynthetic Organelles, 45–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-75145-5_4.
Pełny tekst źródłaSuzuki, Tsutomu. "Biosynthesis and function of tRNA wobble modifications". W Fine-Tuning of RNA Functions by Modification and Editing, 23–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/b106361.
Pełny tekst źródłaAlfonzo, Juan D. "Editing of tRNA for Structure and Function". W Nucleic Acids and Molecular Biology, 33–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-73787-2_2.
Pełny tekst źródłaShigi, Naoki. "Sulfur Modifications in tRNA: Function and Implications for Human Disease". W Modified Nucleic Acids in Biology and Medicine, 55–71. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-34175-0_3.
Pełny tekst źródłaStreszczenia konferencji na temat "TRNA Function"
Williams, Tamara, Adam Mirando, Christopher Francklyn i Karen M. Lounsbury. "Abstract 3897: A novel function for threonyl-tRNA synthetase as a stimulator of angiogenesis and endothelial cell migration." W Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-3897.
Pełny tekst źródłaShigematsu, M., K. Pawar, T. Kawamura, D. A. Deshpande i Y. Kirino. "Expression and Functional Role of tRNA-Derived Non-Coding RNAs in Asthma". W American Thoracic Society 2019 International Conference, May 17-22, 2019 - Dallas, TX. American Thoracic Society, 2019. http://dx.doi.org/10.1164/ajrccm-conference.2019.199.1_meetingabstracts.a6114.
Pełny tekst źródłaHonda, Shozo, Megumi Shigematsu, Phillipe Loher, Juan P. Palazzo, Issei Imoto, Isidore Rigoutsos i Yohei Kirino. "Abstract 2665: SHOT-RNAs: A novel class of tRNA-derived functional RNAs expressed in hormone-dependent cancers". W Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-2665.
Pełny tekst źródłaYi Lee, Ching, Ching I Chen i Meng-Cong Zheng. "User Experience of Taiwan Railway Ticket Vending Machine". W 13th International Conference on Applied Human Factors and Ergonomics (AHFE 2022). AHFE International, 2022. http://dx.doi.org/10.54941/ahfe1001699.
Pełny tekst źródłaAndreev, D. E., M. Terenin, S. E. Dmitriev, M. Niepmann i I. N. Shatsky. "MOONLIGHTING FUNCTIONS OF GLYCYL-TRNA SYNTHETASE IN MAMMALIAN CELLS: THE ROLE IN THE TRANSLATION INITIATION ON THE IRES ELEMENTS OF ENTEROVIRUS RNAS". W Viruses: Discovering Big in Small. TORUS PRESS, 2019. http://dx.doi.org/10.30826/viruses-2019-13.
Pełny tekst źródłaCastilla, Andre Coutinho, Priscilla Koch Wagner, Jessicados Santos de Oliveira, Maria Fernanda Barbosa Wanderley i Anthony Moreno Eigier. "Neuralmed trIA: Automated Screening of Urgent Findings on Head CT Scans". W XIII Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1516-3180.342.
Pełny tekst źródłaKubisz, P., S. Brahimi i S. Cronberg. "INFLUENCE OF L0MUSTIN ON SOME PLATELET FUNCTIONS IN VITRO". W XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643443.
Pełny tekst źródłaXiao, Y., E. R. Hsieh, Steve S. Chung, T. R. Chen, S. A. Huang, T. J. Chen i Osbert Cheng. "Novel Concept of the Transistor Variation Directed Toward the Circuit Implementation of Physical Unclonable Function (PUF) and True-random-number Generator (TRNG)". W 2019 IEEE International Electron Devices Meeting (IEDM). IEEE, 2019. http://dx.doi.org/10.1109/iedm19573.2019.8993496.
Pełny tekst źródłaBang, K. H., i W. H. Choo. "Flow Boiling in Minichannels of Copper, Brass, and Aluminum Round Tubes". W ASME 2004 2nd International Conference on Microchannels and Minichannels. ASMEDC, 2004. http://dx.doi.org/10.1115/icmm2004-2381.
Pełny tekst źródłaChen, I.-Chang, Shu-Keng Hsu, Teh-Juan Wu, Li-Hsien Yen, Yusin Lee, Dung-Ying Lin, Chuen-Yih Chen, Wei-Hsun Lee i Guo-Wei Su. "RDSP: A Railway Decision Support Platform for Integrating and Bridging Existed Legacy Systems". W 2013 Joint Rail Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/jrc2013-2442.
Pełny tekst źródłaRaporty organizacyjne na temat "TRNA Function"
Ostersetzer-Biran, Oren, i Jeffrey Mower. Novel strategies to induce male sterility and restore fertility in Brassicaceae crops. United States Department of Agriculture, styczeń 2016. http://dx.doi.org/10.32747/2016.7604267.bard.
Pełny tekst źródła