Artykuły w czasopismach na temat „TREK1”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „TREK1”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Levitz, Joshua, Perrine Royal, Yannick Comoglio, et al. "Heterodimerization within the TREK channel subfamily produces a diverse family of highly regulated potassium channels." Proceedings of the National Academy of Sciences 113, no. 15 (2016): 4194–99. http://dx.doi.org/10.1073/pnas.1522459113.
Pełny tekst źródłaKim, Seong-Seop, Jimin Park, Eunju Kim, Eun Mi Hwang та Jae-Yong Park. "β-COP Suppresses the Surface Expression of the TREK2". Cells 12, № 11 (2023): 1500. http://dx.doi.org/10.3390/cells12111500.
Pełny tekst źródłaBai, Xilian, George J. Bugg, Susan L. Greenwood, et al. "Expression of TASK and TREK, two-pore domain K+ channels, in human myometrium." Reproduction 129, no. 4 (2005): 525–30. http://dx.doi.org/10.1530/rep.1.00442.
Pełny tekst źródłaAfzali, Ali M., Tobias Ruck, Alexander M. Herrmann, et al. "The potassium channels TASK2 and TREK1 regulate functional differentiation of murine skeletal muscle cells." American Journal of Physiology-Cell Physiology 311, no. 4 (2016): C583—C595. http://dx.doi.org/10.1152/ajpcell.00363.2015.
Pełny tekst źródłaBlin, Sandy, Ismail Ben Soussia, Eun-Jin Kim, et al. "Mixing and matching TREK/TRAAK subunits generate heterodimeric K2P channels with unique properties." Proceedings of the National Academy of Sciences 113, no. 15 (2016): 4200–4205. http://dx.doi.org/10.1073/pnas.1522748113.
Pełny tekst źródłaHermanstyne, T. O., K. Markowitz, L. Fan, and M. S. Gold. "Mechanotransducers in Rat Pulpal Afferents." Journal of Dental Research 87, no. 9 (2008): 834–38. http://dx.doi.org/10.1177/154405910808700910.
Pełny tekst źródłaPeng, Yuanzhi, Qingqing Zhang, Hao Cheng, Saie Shen, and Xiaojian Weng. "Activation of TREK1 Channel in the Anterior Cingulate Cortex Improves Neuropathic Pain in a Rat Model." Computational Intelligence and Neuroscience 2022 (September 30, 2022): 1–6. http://dx.doi.org/10.1155/2022/1372823.
Pełny tekst źródłaKim, Seong-Seop, Yeonju Bae, Osung Kwon та ін. "β-COP Regulates TWIK1/TREK1 Heterodimeric Channel-Mediated Passive Conductance in Astrocytes". Cells 11, № 20 (2022): 3322. http://dx.doi.org/10.3390/cells11203322.
Pełny tekst źródłaRoyal, Perrine, Pablo Ávalos Prado, Brigitte Wdziekonski, and Guillaume Sandoz. "Canaux potassiques à deux domaines P (K2P) et migraine." Biologie Aujourd'hui 213, no. 1-2 (2019): 51–57. http://dx.doi.org/10.1051/jbio/2019020.
Pełny tekst źródłaBrohawn, Stephen G. "How ion channels sense mechanical force: insights from mechanosensitive K2P channels TRAAK, TREK1, and TREK2." Annals of the New York Academy of Sciences 1352, no. 1 (2015): 20–32. http://dx.doi.org/10.1111/nyas.12874.
Pełny tekst źródłaUnnithan, Afeesh Rajan, Michael Rotherham, Hareklea Markides, and Alicia J. El Haj. "Magnetic Ion Channel Activation (MICA)-Enabled Screening Assay: A Dynamic Platform for Remote Activation of Mechanosensitive Ion Channels." International Journal of Molecular Sciences 24, no. 4 (2023): 3364. http://dx.doi.org/10.3390/ijms24043364.
Pełny tekst źródłaHonoré, Eric. "The neuronal background K2P channels: focus on TREK1." Nature Reviews Neuroscience 8, no. 4 (2007): 251–61. http://dx.doi.org/10.1038/nrn2117.
Pełny tekst źródłaSandoz, G., D. Douguet, F. Chatelain, M. Lazdunski, and F. Lesage. "Extracellular acidification exerts opposite actions on TREK1 and TREK2 potassium channels via a single conserved histidine residue." Proceedings of the National Academy of Sciences 106, no. 34 (2009): 14628–33. http://dx.doi.org/10.1073/pnas.0906267106.
Pełny tekst źródłaPark, Kyoung Sun, and Yangmi Kim. "Functional expression of TREK1 channel in human bone marrow and human umbilical cord vein-derived mesenchymal stem cells." Journal of the Korea Academia-Industrial cooperation Society 16, no. 3 (2015): 1964–71. http://dx.doi.org/10.5762/kais.2015.16.3.1964.
Pełny tekst źródłaGil, V., D. Gallego, H. Moha Ou Maati, et al. "Relative contribution of SKCa and TREK1 channels in purinergic and nitrergic neuromuscular transmission in the rat colon." American Journal of Physiology-Gastrointestinal and Liver Physiology 303, no. 3 (2012): G412—G423. http://dx.doi.org/10.1152/ajpgi.00040.2012.
Pełny tekst źródłaSchmidpeter, Philipp, Aboubacar Wague, John T. Petroff, Wayland W. Cheng, Crina M. Nimigean, and Paul M. Riegelhaupt. "Membrane phospholipids control activity of the mechanosensitive K2P channel TREK1." Biophysical Journal 121, no. 3 (2022): 433a. http://dx.doi.org/10.1016/j.bpj.2021.11.606.
Pełny tekst źródłaGhatak, Swagata, and Sujit Kumar Sikdar. "Lactate modulates the intracellular pH sensitivity of human TREK1 channels." Pflügers Archiv - European Journal of Physiology 468, no. 5 (2016): 825–36. http://dx.doi.org/10.1007/s00424-016-1795-8.
Pełny tekst źródłaFord, Kevin J., David A. Arroyo, Jeremy N. Kay, et al. "A role for TREK1 in generating the slow afterhyperpolarization in developing starburst amacrine cells." Journal of Neurophysiology 109, no. 9 (2013): 2250–59. http://dx.doi.org/10.1152/jn.01085.2012.
Pełny tekst źródłaSandoz, G., S. C. Bell, and E. Y. Isacoff. "Optical probing of a dynamic membrane interaction that regulates the TREK1 channel." Proceedings of the National Academy of Sciences 108, no. 6 (2011): 2605–10. http://dx.doi.org/10.1073/pnas.1015788108.
Pełny tekst źródłaChoudhury, Nasreen, та Sujit Kumar Sikdar. "17β-estradiol potentiates TREK1 channel activity through G protein-coupled estrogen receptor". Journal of Steroid Biochemistry and Molecular Biology 183 (жовтень 2018): 94–105. http://dx.doi.org/10.1016/j.jsbmb.2018.06.001.
Pełny tekst źródłaAl-Moubarak, Ehab, and Alistair Mathie. "Enhancement of Current through Trek1 Two Pore Domain Channels by Flufenamic Acid." Biophysical Journal 106, no. 2 (2014): 748a. http://dx.doi.org/10.1016/j.bpj.2013.11.4121.
Pełny tekst źródłaSrisomboon, Yotesawee, Nathan A. Zaidman, Peter J. Maniak, Chatsri Deachapunya, and Scott M. O’Grady. "P2Y receptor regulation of K2P channels that facilitate K+ secretion by human mammary epithelial cells." American Journal of Physiology-Cell Physiology 314, no. 5 (2018): C627—C639. http://dx.doi.org/10.1152/ajpcell.00342.2016.
Pełny tekst źródłaÜlkümen, Burak. "Role of Nasal AQP5 And TREK1 Expression in Biomolecular Background of Pregnancy Rhinitis." International Journal of Academic Medicine and Pharmacy Volume: 2 Issue: 3, Volume: 2 Issue: 3 (2020): 197–203. http://dx.doi.org/10.29228/jamp.44176.
Pełny tekst źródłaBusserolles, Jérôme, Ismail Ben Soussia, Laetitia Pouchol, et al. "TREK1 channel activation as a new analgesic strategy devoid of opioid adverse effects." British Journal of Pharmacology 177, no. 20 (2020): 4782–95. http://dx.doi.org/10.1111/bph.15243.
Pełny tekst źródłaHuang, Huang, Jiang-Qi Liu, Yong Yu, et al. "Regulation of TWIK-related potassium channel-1 (Trek1) restitutes intestinal epithelial barrier function." Cellular & Molecular Immunology 13, no. 1 (2015): 110–18. http://dx.doi.org/10.1038/cmi.2014.137.
Pełny tekst źródłaYin, Xin, Binxiao Su, Haopeng Zhang, et al. "TREK1 activation mediates spinal cord ischemic tolerance induced by isoflurane preconditioning in rats." Neuroscience Letters 515, no. 2 (2012): 115–20. http://dx.doi.org/10.1016/j.neulet.2012.03.006.
Pełny tekst źródłaVeale, Emma L., Kathryn A. Rees, Alistair Mathie, and Stefan Trapp. "Dominant Negative Effects of a Non-conducting TREK1 Splice Variant Expressed in Brain." Journal of Biological Chemistry 285, no. 38 (2010): 29295–304. http://dx.doi.org/10.1074/jbc.m110.108423.
Pełny tekst źródłaKim, Eunju, Eun Mi Hwang, Oleg Yarishkin та ін. "Enhancement of TREK1 channel surface expression by protein–protein interaction with β-COP". Biochemical and Biophysical Research Communications 395, № 2 (2010): 244–50. http://dx.doi.org/10.1016/j.bbrc.2010.03.171.
Pełny tekst źródłaWang, Yuzhi, Lingyan Lv, Hongrui Zang, et al. "Regulation of Trek1 expression in nasal mucosa with allergic rhinitis by specific immunotherapy." Cell Biochemistry and Function 33, no. 1 (2014): 23–28. http://dx.doi.org/10.1002/cbf.3075.
Pełny tekst źródłaMiller, Paula, Chris Peers, and Paul J. Kemp. "Polymodal regulation of hTREK1 by pH, arachidonic acid, and hypoxia: physiological impact in acidosis and alkalosis." American Journal of Physiology-Cell Physiology 286, no. 2 (2004): C272—C282. http://dx.doi.org/10.1152/ajpcell.00334.2003.
Pełny tekst źródłaKondo, Rubii, Akari Deguchi, Naoki Kawata, Yoshiaki Suzuki, and Hisao Yamamura. "Involvement of TREK1 channels in the proliferation of human hepatic stellate LX-2 cells." Journal of Pharmacological Sciences 148, no. 3 (2022): 286–94. http://dx.doi.org/10.1016/j.jphs.2022.01.003.
Pełny tekst źródłaBittner, Stefan, Tobias Ruck, Michael K. Schuhmann, et al. "Endothelial TWIK-related potassium channel-1 (TREK1) regulates immune-cell trafficking into the CNS." Nature Medicine 19, no. 9 (2013): 1161–65. http://dx.doi.org/10.1038/nm.3303.
Pełny tekst źródłaTong, L., M. Cai, Y. Huang, et al. "Activation of K 2 P channel–TREK1 mediates the neuroprotection induced by sevoflurane preconditioning." British Journal of Anaesthesia 113, no. 1 (2014): 157–67. http://dx.doi.org/10.1093/bja/aet338.
Pełny tekst źródłaBrohawn, Stephen G., Zhenwei Su, and Roderick MacKinnon. "Mechanosensitivity is mediated directly by the lipid membrane in TRAAK and TREK1 K+channels." Proceedings of the National Academy of Sciences 111, no. 9 (2014): 3614–19. http://dx.doi.org/10.1073/pnas.1320768111.
Pełny tekst źródłaYe, Dongqing, Yang Li, Xiangrong Zhang, et al. "TREK1 channel blockade induces an antidepressant-like response synergizing with 5-HT1A receptor signaling." European Neuropsychopharmacology 25, no. 12 (2015): 2426–36. http://dx.doi.org/10.1016/j.euroneuro.2015.09.007.
Pełny tekst źródłaViswanath, Ambily Nath Indu, Seo Yun Jung, Eun Mi Hwang, et al. "Identification of the firstin silico-designed TREK1 antagonists that block channel currents dose dependently." Chemical Biology & Drug Design 88, no. 6 (2016): 807–19. http://dx.doi.org/10.1111/cbdd.12810.
Pełny tekst źródłaFan, Jing, Junxi Du, Zhongwei Zhang, et al. "The Protective Effects of Hydrogen Sulfide New Donor Methyl S-(4-Fluorobenzyl)-N-(3,4,5-Trimethoxybenzoyl)-l-Cysteinate on the Ischemic Stroke." Molecules 27, no. 5 (2022): 1554. http://dx.doi.org/10.3390/molecules27051554.
Pełny tekst źródłaVeale, Emma L., Ehab Al-Moubarak, Naina Bajaria, et al. "Influence of the N Terminus on the Biophysical Properties and Pharmacology of TREK1 Potassium Channels." Molecular Pharmacology 85, no. 5 (2014): 671–81. http://dx.doi.org/10.1124/mol.113.091199.
Pełny tekst źródłaKim, Seung Chan, Jae Hyouk Choi, and Eunmi Hwang. "TREK1 channel in DGGCs ameliorates depression-like behaviour and increases adult hippocampal neurogenesis in mice." IBRO Reports 6 (September 2019): S116. http://dx.doi.org/10.1016/j.ibror.2019.07.370.
Pełny tekst źródłaZhi, Yuanxing, Jin Liu, Peihua Kuang, et al. "Novel DCPIB analogs as dual inhibitors of VRAC/TREK1 channels reduced cGAS-STING mediated interferon responses." Biochemical Pharmacology 199 (May 2022): 114988. http://dx.doi.org/10.1016/j.bcp.2022.114988.
Pełny tekst źródłaTarasov, Michail V., Polina D. Kotova, Marina F. Bystrova, Natalia V. Kabanova, Veronika Yu Sysoeva, and Stanislav S. Kolesnikov. "Arachidonic acid hyperpolarizes mesenchymal stromal cells from the human adipose tissue by stimulating TREK1 K+ channels." Channels 13, no. 1 (2019): 36–47. http://dx.doi.org/10.1080/19336950.2019.1565251.
Pełny tekst źródłaQi, Xinyang, Hua Xu, Liping Wang, and Zhijun Zhang. "Comparison of Therapeutic Effects of TREK1 Blockers and Fluoxetine on Chronic Unpredicted Mild Stress Sensitive Rats." ACS Chemical Neuroscience 9, no. 11 (2018): 2824–31. http://dx.doi.org/10.1021/acschemneuro.8b00225.
Pełny tekst źródłaBanerjee, Aditi, Swagata Ghatak, and Sujit Kumar Sikdar. "l -Lactate mediates neuroprotection against ischaemia by increasing TREK1 channel expression in rat hippocampal astrocytes in vitro." Journal of Neurochemistry 138, no. 2 (2016): 265–81. http://dx.doi.org/10.1111/jnc.13638.
Pełny tekst źródłaIntelligence and Neuroscience, Computational. "Retracted: Activation of TREK1 Channel in the Anterior Cingulate Cortex Improves Neuropathic Pain in a Rat Model." Computational Intelligence and Neuroscience 2023 (August 16, 2023): 1. http://dx.doi.org/10.1155/2023/9768435.
Pełny tekst źródłaWang, Kun, and Xiangang Kong. "Isoflurane Preconditioning Induces Neuroprotection by Up-Regulation of TREK1 in a Rat Model of Spinal Cord Ischemic Injury." Biomolecules & Therapeutics 24, no. 5 (2016): 495–500. http://dx.doi.org/10.4062/biomolther.2015.206.
Pełny tekst źródłaHenstock, James R., Michael Rotherham, and Alicia J. El Haj. "Magnetic ion channel activation of TREK1 in human mesenchymal stem cells using nanoparticles promotes osteogenesis in surrounding cells." Journal of Tissue Engineering 9 (January 2018): 204173141880869. http://dx.doi.org/10.1177/2041731418808695.
Pełny tekst źródłaGarry, Ambroise, Bérengère Fromy, Nicolas Blondeau, et al. "Altered acetylcholine, bradykinin and cutaneous pressure‐induced vasodilation in mice lacking the TREK1 potassium channel: the endothelial link." EMBO reports 8, no. 4 (2007): 354–59. http://dx.doi.org/10.1038/sj.embor.7400916.
Pełny tekst źródłaSandoz, Guillaume, Joshua Levitz, Richard H. Kramer, and Ehud Y. Isacoff. "Optical Control of Endogenous Proteins with a Photoswitchable Conditional Subunit Reveals a Role for TREK1 in GABAB Signaling." Neuron 74, no. 6 (2012): 1005–14. http://dx.doi.org/10.1016/j.neuron.2012.04.026.
Pełny tekst źródłaRiegelhaupt, Paul M., Kellie A. Woll, Thomas T. Joseph, Kiran A. Vaidya, Crina M. Nimigean, and Roderic G. Eckenhoff. "Identification of a Modulatory Site of Action for the Volatile Anesthetic Isoflurane in TREK1 Tandem Pore Potassium Channels." Biophysical Journal 114, no. 3 (2018): 487a—488a. http://dx.doi.org/10.1016/j.bpj.2017.11.2675.
Pełny tekst źródłaLane, Cemantha, Xianyao Xu, Xiaoping Wan, Isabelle Deschenes, and Thomas J. Hund. "PO-01-241 ROLE OF THE TWO-PORE K CHANNEL TREK1 IN REGULATING HEART FAILURE-INDUCED VENTRICULAR ARRHYTHMIA." Heart Rhythm 20, no. 5 (2023): S166. http://dx.doi.org/10.1016/j.hrthm.2023.03.537.
Pełny tekst źródła