Gotowa bibliografia na temat „Transman qubit”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Transman qubit”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Transman qubit"
Said, T., A. Chouikh, K. Essammouni i M. Bennai. "Implementing N-quantum phase gate via circuit QED with qubit–qubit interaction". Modern Physics Letters B 30, nr 05 (20.02.2016): 1650050. http://dx.doi.org/10.1142/s0217984916500500.
Pełny tekst źródłaYuan, Wei-Ping, Zhi-Cheng He, Sai Li i Zheng-Yuan Xue. "Fast Reset Protocol for Superconducting Transmon Qubits". Applied Sciences 13, nr 2 (6.01.2023): 817. http://dx.doi.org/10.3390/app13020817.
Pełny tekst źródłaSun, Xiaopei, Bing Li, Enna Zhuo, Zhaozheng Lyu, Zhongqing Ji, Jie Fan, Xiaohui Song i in. "Realization of superconducting transmon qubits based on topological insulator nanowires". Applied Physics Letters 122, nr 15 (10.04.2023): 154001. http://dx.doi.org/10.1063/5.0140079.
Pełny tekst źródłaTao, Rui, Xiao-Tao Mo, Zheng-Yuan Xue i Jian Zhou. "Practical one-step synthesis of multipartite entangled states on superconducting circuits". International Journal of Quantum Information 17, nr 07 (październik 2019): 1950051. http://dx.doi.org/10.1142/s0219749919500515.
Pełny tekst źródłaKubo, Kentaro, i Hayato Goto. "Fast parametric two-qubit gate for highly detuned fixed-frequency superconducting qubits using a double-transmon coupler". Applied Physics Letters 122, nr 6 (6.02.2023): 064001. http://dx.doi.org/10.1063/5.0138699.
Pełny tekst źródłaDong, Yuqian, Yong Li, Wen Zheng, Yu Zhang, Zhuang Ma, Xinsheng Tan i Yang Yu. "Measurement of Quasiparticle Diffusion in a Superconducting Transmon Qubit". Applied Sciences 12, nr 17 (24.08.2022): 8461. http://dx.doi.org/10.3390/app12178461.
Pełny tekst źródłaYe, Yangsen, Sirui Cao, Yulin Wu, Xiawei Chen, Qingling Zhu, Shaowei Li, Fusheng Chen i in. "Realization of High-Fidelity Controlled-Phase Gates in Extensible Superconducting Qubits Design with a Tunable Coupler". Chinese Physics Letters 38, nr 10 (1.11.2021): 100301. http://dx.doi.org/10.1088/0256-307x/38/10/100301.
Pełny tekst źródłaBultink, C. C., T. E. O’Brien, R. Vollmer, N. Muthusubramanian, M. W. Beekman, M. A. Rol, X. Fu i in. "Protecting quantum entanglement from leakage and qubit errors via repetitive parity measurements". Science Advances 6, nr 12 (marzec 2020): eaay3050. http://dx.doi.org/10.1126/sciadv.aay3050.
Pełny tekst źródłaGroszkowski, Peter, i Jens Koch. "Scqubits: a Python package for superconducting qubits". Quantum 5 (17.11.2021): 583. http://dx.doi.org/10.22331/q-2021-11-17-583.
Pełny tekst źródłaAhmad, Halima Giovanna, Caleb Jordan, Roald van den Boogaart, Daan Waardenburg, Christos Zachariadis, Pasquale Mastrovito, Asen Lyubenov Georgiev i in. "Investigating the Individual Performances of Coupled Superconducting Transmon Qubits". Condensed Matter 8, nr 1 (21.03.2023): 29. http://dx.doi.org/10.3390/condmat8010029.
Pełny tekst źródłaRozprawy doktorskie na temat "Transman qubit"
Bader, Samuel James. "Higher levels of the transmon qubit". Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/92701.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references (pages 91-95).
This thesis discusses recent experimental work in measuring the properties of higher levels in transmon qubit systems. The first part includes a thorough overview of transmon devices, explaining the principles of the device design, the transmon Hamiltonian, and general Circuit Quantum Electrodynamics concepts and methodology. The second part discusses the experimental setup and methods employed in measuring the higher levels of these systems, and the details of the simulation used to explain and predict the properties of these levels.
by Samuel James Bader.
S.B.
Convertini, Luciana. "Simulazione numerica di qubit a superconduttori di tipo transmon: dal layout al gate a singolo qubit". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2022.
Znajdź pełny tekst źródłaAndersson, Gustav. "Circuit quantum electrodynamics with a transmon qubit in a 3D cavity". Thesis, KTH, Tillämpad fysik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-168010.
Pełny tekst źródłaSuri, Baladitya. "Transmon qubits coupled to superconducting lumped element resonators". Thesis, University of Maryland, College Park, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=3711371.
Pełny tekst źródłaI discuss the design, fabrication and measurement at millikelvin-temperatures of Al/AlOx/Al Josephson junction-based transmon qubits coupled to superconducting thin-film lumped element microwave resonators made of aluminum on sapphire. The resonators had a center frequency of around 6GHz, and a total quality factor ranging from 15,000 to 70,000 for the various devices. The area of the transmon junctions was about 150 nm × 150 nm and with Josephson energy EJ such that 10GHz ≤ EJ ≤ 30 GHz. The charging energy of the transmons arising mostly from the large interdigital shunt capacitance, was Ec/h ≈ 300MHz.
I present microwave spectroscopy of the devices in the strongly dispersive regime of circuit quantum electrodynamics. In this limit the ac Stark shift due to a single photon in the resonator is greater than the linewidth of the qubit transition. When the resonator is driven coherently using a coupler tone, the transmon spectrum reveals individual "photon number'' peaks, each corresponding to a single additional photon in the resonator. Using a weighted average of the peak heights in the qubit spectrum, I calculated the average number of photons n¯ in the resonator. I also observed a nonlinear variation of n¯ with the applied power of the coupler tone Prf. I studied this nonlinearity using numerical simulations and found good qualitative agreement with data.
In the absence of a coherent drive on the resonator, a thermal population of 5.474 GHz photons in the resonator, at an effective temperature of 120 mK resulted in a weak n = 1 thermal photon peak in the qubit spectrum. In the presence of independent coupler and probe tones, the n = 1 thermal photon peak revealed an Autler-Townes splitting. The observed effect was explained accurately using the four lowest levels of the dispersively dressed Jaynes-Cummings transmon-resonator system, and numerical simulations of the steady-state master equation for the coupled system.
I also present time-domain measurements on transmons coupled to lumped-element resonators. From T1 and Rabi oscillation measurements, I found that my early transmon devices (called design LEv5) had lifetimes (T1 ∼ 1 μs) limited by strong coupling to the 50 Ω transmission line. This coupling was characterized by the the rate of change of the Rabi oscillation frequency with the change in the drive voltage (dfRabi /dV) – also termed the Rabi coupling to the drive. I studied the design of the transmon-resonator system using circuit analysis and microwave simulations with the aim being to reduce the Rabi coupling to the drive. By increasing the resonance frequency of the resonator ωr/2π from 5.4 GHz to 7.2 GHz, lowering the coupling of the resonator to the transmission line and thereby increasing the external quality factor Qe from 20,000 to 70,000, and reducing the transmon-resonator coupling g/2π from 70 MHz to 40 MHz, I reduced the Rabi coupling to the drive by an order of magnitude (∼ factor of 20). The T 1 ∼ 4 μs of devices in the new design (LEv6) was longer than that of the early devices, but still much shorter than the lifetimes predicted from Rabi coupling, suggesting the presence of alternative sources of noise causing qubit relaxation. Microwave simulations and circuit analysis in the presence of a dielectric loss tangent tan δ ≃ 5 × 10 -6 agree reasonably well with the measured T 1 values, suggesting that surface dielectric loss may be causing relaxation of transmons in the new designs.
Schmitt, Vivien. "Design, fabrication and test of a four superconducting quantum-bit processor". Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066184/document.
Pełny tekst źródłaThis thesis presents our effort to design, fabricate and test a simple 4-Josephson qubit processor with scalability potential. The qubits are frequency tunable and are coupled to a shared coupling bus able to implement iSwap two-qubit gates on any pair of qubits. Each qubit is fitted with its own readout made of a Josephson bifurcation amplifier (JBA). The operation principle of the processor, the choice of parameters, the microwave layout design, as well as the fabrication processes are described. A first experiment demonstrates the simultaneous high-fidelity readout of all the qubits by frequency multiplexing of the JBA signals. A second one tests the two-qubit iSwap gate of the processor, the fidelity of which happens to be limited by the intrinsic qubit decoherence
Boissonneault, Maxime. "Mesure et rétroaction sur un qubit multi-niveaux en électrodynamique quantique en circuit non linéaire". Thèse, Université de Sherbrooke, 2011. http://savoirs.usherbrooke.ca/handle/11143/5146.
Pełny tekst źródłaBilmes, Alexander [Verfasser], i Ustinov A. [Akademischer Betreuer] V. "Resolving locations of defects in superconducting transmon qubits / Alexander Bilmes ; Betreuer: A. V. Ustinov". Karlsruhe : KIT Scientific Publishing, 2019. http://d-nb.info/1200547977/34.
Pełny tekst źródłaRicher, Susanne [Verfasser], David P. [Akademischer Betreuer] DiVincenzo i Christoph [Akademischer Betreuer] Stampfer. "Design of an inductively shunted transmon qubit with tunable transverse and longitudinal coupling / Susanne Richer ; David P. DiVincenzo, Christoph Stampfer". Aachen : Universitätsbibliothek der RWTH Aachen, 2018. http://d-nb.info/1185442006/34.
Pełny tekst źródłaNguyen, Francois. "Cooper pair box circuits : two‐qubit gate, single‐shot readout, and current to frequency conversion". Phd thesis, Université Pierre et Marie Curie - Paris VI, 2008. http://tel.archives-ouvertes.fr/tel-00390074.
Pełny tekst źródłaTo implement two-qubit gates, we have developed a new circuit, the quantroswap, which consists in two capacitively coupled Cooper pair box, each of them being manipulated and read separately. We have demonstrated coherent exchange of energy between them, but we have also observed a problem of qubit instability.
In order to avoid this spurious effect, we have implemented another circuit based on a charge insensitive split Cooper pair box coupled to a non-linear resonator for readout-out purpose. We have measured large coherence time, and obtained large readout fidelity (90%) using the bifurcation phenomenon.
For metrological purpose, microwave reflectometry measurement on a quantronium also allowed us to relate an applied current I to the frequency f=I/2e of induced Bloch oscillations.
Peterer, Michael. "Experiments on multi-level superconducting qubits and coaxial circuit QED". Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:572f08ef-2d14-4fda-8e18-71f80fc4c47a.
Pełny tekst źródłaCzęści książek na temat "Transman qubit"
Sharma, Ankit, i Manisha J. Nene. "Quantum Information Transmission Using CNOT Gate". W Recent Trends in Intensive Computing. IOS Press, 2021. http://dx.doi.org/10.3233/apc210219.
Pełny tekst źródłaRau, Jochen. "Communication". W Quantum Theory, 223–60. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780192896308.003.0005.
Pełny tekst źródłaKenyon, Ian R. "Superconductivity". W Quantum 20/20, 261–84. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198808350.003.0015.
Pełny tekst źródłaStreszczenia konferencji na temat "Transman qubit"
Murthy, Akshay. "Systematic Improvements in Transmon Qubit Coherence Enabled by Comprehensive Investigation of Defects and Inhomogeneities". W Systematic Improvements in Transmon Qubit Coherence Enabled by Comprehensive Investigation of Defects and Inhomogeneities. US DOE, 2023. http://dx.doi.org/10.2172/1988485.
Pełny tekst źródłaLiu, Chenxu, Edwin Barnes i Sophia Economou. "Proposal for Generating Complex Microwave Graph States Using Superconducting Circuits". W Quantum 2.0. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/quantum.2022.qtu2a.21.
Pełny tekst źródłaDasgupta, Samudra, Kathleen E. Hamilton i Arnab Banerjee. "Characterizing the memory capacity of transmon qubit reservoirs". W 2022 IEEE International Conference on Quantum Computing and Engineering (QCE). IEEE, 2022. http://dx.doi.org/10.1109/qce53715.2022.00035.
Pełny tekst źródłaZhou, Yu, Zhihui Peng, Yuta Horiuchi, O. V. Astafiev i J. S. Tsai. "Efficient Tunable Microwave Single-photon Source Based on Transmon Qubit". W 2019 IEEE International Superconductive Electronics Conference (ISEC). IEEE, 2019. http://dx.doi.org/10.1109/isec46533.2019.8990896.
Pełny tekst źródłaTien, Kevin, Ken Inoue, Scott Lekuch, David J. Frank, Sudipto Chakraborty, Pat Rosno, Thomas Fox i in. "A Cryo-CMOS Transmon Qubit Controller and Verification with FPGA Emulation". W 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2022. http://dx.doi.org/10.23919/date54114.2022.9774702.
Pełny tekst źródłaChoi, JeaKyung, Heyok Hwang i Eunseong Kim. "Power dependent dynamics of the 2nd excited state of a Transmon qubit". W 2022 IEEE International Conference on Quantum Computing and Engineering (QCE). IEEE, 2022. http://dx.doi.org/10.1109/qce53715.2022.00136.
Pełny tekst źródłaRoth, Thomas E., i Weng C. Chew. "Full-Wave Computation of the Spontaneous Emission Rate of a Transmon Qubit". W 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI). IEEE, 2021. http://dx.doi.org/10.1109/aps/ursi47566.2021.9704323.
Pełny tekst źródłaBardin, J. C. "A Low-Power CMOS Quantum Controller for Transmon Qubits". W 2020 IEEE International Electron Devices Meeting (IEDM). IEEE, 2020. http://dx.doi.org/10.1109/iedm13553.2020.9372108.
Pełny tekst źródłaRoth, T. E., i W. C. Chew. "Field-based Description of the Coupling between a Transmon Qubit and a Transmission Line Geometry". W 2022 Photonics & Electromagnetics Research Symposium (PIERS). IEEE, 2022. http://dx.doi.org/10.1109/piers55526.2022.9792669.
Pełny tekst źródłaRoth, Thomas E. "Finite Element Time Domain Discretization of a Semiclassical Maxwell-Schrödinger Model of a Transmon Qubit". W 2023 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO). IEEE, 2023. http://dx.doi.org/10.1109/nemo56117.2023.10202378.
Pełny tekst źródła