Artykuły w czasopismach na temat „Transition Metal Oxides (TMOs)”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Transition Metal Oxides (TMOs)”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Mitchell, James B., Matthew Chagnot i Veronica Augustyn. "Hydrous Transition Metal Oxides for Electrochemical Energy and Environmental Applications". Annual Review of Materials Research 53, nr 1 (3.07.2023): 1–23. http://dx.doi.org/10.1146/annurev-matsci-080819-124955.
Pełny tekst źródłaChen, Da, Quan Ming Li i Wang Gao. "Role of van der Waals forces in the metal–insulator transition of transition metal oxides". Physical Chemistry Chemical Physics 24, nr 9 (2022): 5455–61. http://dx.doi.org/10.1039/d2cp00282e.
Pełny tekst źródłaBishop, Alan R. "A Lattice Litany for Transition Metal Oxides". Condensed Matter 5, nr 3 (13.07.2020): 46. http://dx.doi.org/10.3390/condmat5030046.
Pełny tekst źródłaPrajapati, Aditya, Brianna A. Collins, Jason D. Goodpaster i Meenesh R. Singh. "Fundamental insight into electrochemical oxidation of methane towards methanol on transition metal oxides". Proceedings of the National Academy of Sciences 118, nr 8 (17.02.2021): e2023233118. http://dx.doi.org/10.1073/pnas.2023233118.
Pełny tekst źródłaLiu, Wei, Qun Xu i Yannan Zhou. "CO2-assisted fabrication of two-dimensional amorphous transition metal oxides". Dalton Transactions 49, nr 7 (2020): 2048–52. http://dx.doi.org/10.1039/c9dt04651h.
Pełny tekst źródłaWu, Zhuo-Dong, De-Jian Chen, Long Li i Li-Na Wang. "A universal electrochemical lithiation–delithiation method to prepare low-crystalline metal oxides for high-performance hybrid supercapacitors". RSC Advances 11, nr 48 (2021): 30407–14. http://dx.doi.org/10.1039/d1ra05814b.
Pełny tekst źródłaRong, Kai, Jiale Wei, Liang Huang, Youxing Fang i Shaojun Dong. "Synthesis of low dimensional hierarchical transition metal oxides via a direct deep eutectic solvent calcining method for enhanced oxygen evolution catalysis". Nanoscale 12, nr 40 (2020): 20719–25. http://dx.doi.org/10.1039/d0nr04378h.
Pełny tekst źródłaWu, Jian, Wen-Jin Yin, Wei-Wei Liu, Pan Guo, Guobiao Liu, Xicuan Liu, Dongsheng Geng, Woon-Ming Lau, Hao Liu i Li-Min Liu. "High performance NiO nanosheets anchored on three-dimensional nitrogen-doped carbon nanotubes as a binder-free anode for lithium ion batteries". Journal of Materials Chemistry A 4, nr 28 (2016): 10940–47. http://dx.doi.org/10.1039/c6ta03137d.
Pełny tekst źródłaZhou, Chuan, Haiyang Yuan, P. Hu i Haifeng Wang. "A general doping rule: rational design of Ir-doped catalysts for the oxygen evolution reaction". Chemical Communications 56, nr 96 (2020): 15201–4. http://dx.doi.org/10.1039/d0cc06282k.
Pełny tekst źródłaZhao, Zijian, Guiying Tian, Angelina Sarapulova, Lihua Zhu i Sonia Dsoke. "Influence of phase variation of ZnMn2O4/carbon electrodes on cycling performances of Li-ion batteries". Inorganic Chemistry Frontiers 7, nr 19 (2020): 3657–66. http://dx.doi.org/10.1039/d0qi00610f.
Pełny tekst źródłaSachs, Michael, Liam Harnett-Caulfield, Ernest Pastor, Jenny Nelson, Aron Walsh i James Durrant. "(Invited) Ultrafast Charge Recombination and Localisation in Transition Metal Oxides with Extended Visible Light Absorption". ECS Meeting Abstracts MA2022-02, nr 48 (9.10.2022): 1835. http://dx.doi.org/10.1149/ma2022-02481835mtgabs.
Pełny tekst źródłaKang, Yihong, Hanhan Xie, Danni Liu, Ming Gao, Paul K. Chu, Seeram Ramakrishna i Xue-Feng Yu. "Facile mass production of self-supported two-dimensional transition metal oxides for catalytic applications". Chemical Communications 55, nr 76 (2019): 11406–9. http://dx.doi.org/10.1039/c9cc06261k.
Pełny tekst źródłaAdedeji, A. V., S. D. Worsley, T. L. Baker, R. Mundle, A. K. Pradhan, A. C. Ahyi i T. Isaacs-Smith. "Dynamic Properties of Spectrally Selective Reactively Sputtered Metal Oxides". MRS Proceedings 1494 (2013): 245–51. http://dx.doi.org/10.1557/opl.2013.593.
Pełny tekst źródłaPeng, Lei, Sheying Dong, Yaqi An i Mengnan Qu. "Controllable generation of ZnO/ZnCo2O4 arising from bimetal–organic frameworks for electrochemical detection of naphthol isomers". Analyst 146, nr 10 (2021): 3352–60. http://dx.doi.org/10.1039/d1an00193k.
Pełny tekst źródłaLiang, Ruibin, Yongquan Du, Peng Xiao, Junyang Cheng, Shengjin Yuan, Yonglong Chen, Jian Yuan i Jianwen Chen. "Transition Metal Oxide Electrode Materials for Supercapacitors: A Review of Recent Developments". Nanomaterials 11, nr 5 (10.05.2021): 1248. http://dx.doi.org/10.3390/nano11051248.
Pełny tekst źródłaYang, Cheng, Weiheng Gong i Bo Zhang. "Research progress of transition metal compounds and composites in the field of supercapacitors". Highlights in Science, Engineering and Technology 53 (30.06.2023): 228–34. http://dx.doi.org/10.54097/hset.v53i.9731.
Pełny tekst źródłaJo, Seunghwan, Young-Woo Lee, John Hong i Jung Inn Sohn. "Simple and Facile Fabrication of Anion-Vacancy-Induced MoO3−X Catalysts for Enhanced Hydrogen Evolution Activity". Catalysts 10, nr 10 (14.10.2020): 1180. http://dx.doi.org/10.3390/catal10101180.
Pełny tekst źródłaAhuja, Preety, Sanjeev Kumar Ujjain, Rajni Kanojia i Pankaj Attri. "Transition Metal Oxides and Their Composites for Photocatalytic Dye Degradation". Journal of Composites Science 5, nr 3 (15.03.2021): 82. http://dx.doi.org/10.3390/jcs5030082.
Pełny tekst źródłaLi, Shuang, Yu-Chang Hou, Yuan-Ru Guo i Qing-Jiang Pan. "Uranium-Doped Zinc, Copper, and Nickel Oxides for Enhanced Catalytic Conversion of Furfural to Furfuryl Alcohol: A Relativistic DFT Study". Molecules 27, nr 18 (18.09.2022): 6094. http://dx.doi.org/10.3390/molecules27186094.
Pełny tekst źródłaQuispe-Garrido, Vanessa, Gabriel Antonio Cerron-Calle, Antony Bazan-Aguilar, José G. Ruiz-Montoya, Elvis O. López i Angélica M. Baena-Moncada. "Advances in the design and application of transition metal oxide-based supercapacitors". Open Chemistry 19, nr 1 (1.01.2021): 709–25. http://dx.doi.org/10.1515/chem-2021-0059.
Pełny tekst źródłaYin, Zongyou, Moshe Tordjman, Youngtack Lee, Alon Vardi, Rafi Kalish i Jesús A. del Alamo. "Enhanced transport in transistor by tuning transition-metal oxide electronic states interfaced with diamond". Science Advances 4, nr 9 (wrzesień 2018): eaau0480. http://dx.doi.org/10.1126/sciadv.aau0480.
Pełny tekst źródłaKwon, Minjae, Jongyoon Park i Jongkook Hwang. "Conversion reaction-based transition metal oxides as anode materials for lithium ion batteries: recent progress and future prospects". Ceramist 25, nr 2 (30.06.2022): 218–46. http://dx.doi.org/10.31613/ceramist.2022.25.2.03.
Pełny tekst źródłaZhang, Ying, Meiwen Zhu, Qing Wei i Mingxi Wang. "Removing Chlorobenzene via the Synergistic Effects of Adsorption and Catalytic Oxidation over Activated Carbon Fiber Loaded with Transition Metal Oxides". Atmosphere 13, nr 12 (9.12.2022): 2074. http://dx.doi.org/10.3390/atmos13122074.
Pełny tekst źródłaYi, Di, Jian Liu, Shang-Lin Hsu, Lipeng Zhang, Yongseong Choi, Jong-Woo Kim, Zuhuang Chen i in. "Atomic-scale control of magnetic anisotropy via novel spin–orbit coupling effect in La2/3Sr1/3MnO3/SrIrO3 superlattices". Proceedings of the National Academy of Sciences 113, nr 23 (19.05.2016): 6397–402. http://dx.doi.org/10.1073/pnas.1524689113.
Pełny tekst źródłaAlheshibri, Muidh, H. M. Albetran, B. H. Abdelrahman, A. Al-Yaseri, N. Yekeen i I. M. Low. "Wettability of Nanostructured Transition-Metal Oxide (Al2O3, CeO2, and AlCeO3) Powder Surfaces". Materials 15, nr 16 (10.08.2022): 5485. http://dx.doi.org/10.3390/ma15165485.
Pełny tekst źródłaMeng, Jie, Nengjie Feng, Fan Fang, Hui Wan i Guofeng Guan. "Transition metal oxides (TMOs) supported on ordered mesoporous Ce0.1Mn0.9Oδ as high-efficient catalysts for toluene combustion". Materials Letters 263 (marzec 2020): 127230. http://dx.doi.org/10.1016/j.matlet.2019.127230.
Pełny tekst źródłaCarrow, James K., Lauren M. Cross, Robert W. Reese, Manish K. Jaiswal, Carl A. Gregory, Roland Kaunas, Irtisha Singh i Akhilesh K. Gaharwar. "Widespread changes in transcriptome profile of human mesenchymal stem cells induced by two-dimensional nanosilicates". Proceedings of the National Academy of Sciences 115, nr 17 (11.04.2018): E3905—E3913. http://dx.doi.org/10.1073/pnas.1716164115.
Pełny tekst źródłaXiong, Wanning, Jie Ouyang, Xiaoman Wang, Ziheng Hua, Linlin Zhao, Mengyao Li, Yuxin Lu i in. "Semi-Embedding Zn-Co3O4 Derived from Hybrid ZIFs into Wood-Derived Carbon for High-Performance Supercapacitors". Molecules 27, nr 23 (5.12.2022): 8572. http://dx.doi.org/10.3390/molecules27238572.
Pełny tekst źródłaKhidzir, S. M., K. N. Ibrahim i W. A. T. Wan Abdullah. "GW approximation study of late transition metal oxides: Spectral function clusters around Fermi energy as the mechanism behind smearing in momentum density". Modern Physics Letters B 30, nr 14 (29.05.2016): 1650162. http://dx.doi.org/10.1142/s0217984916501621.
Pełny tekst źródłaWang, Bingning, Seoung-Bum Son, Pavan Badami, Stephen E. Trask, Daniel Abraham, Yang Qin, Zhenzhen Yang, Xianyang Wu, Andrew Jansen i Chen Liao. "Understanding and Mitigating the Dissolution and Delamination Issues Encountered with High-Voltage LiNi0.5Mn1.5O4". Batteries 9, nr 9 (24.08.2023): 435. http://dx.doi.org/10.3390/batteries9090435.
Pełny tekst źródłaMendieta-Reyes, Néstor E., Alejandra S. Lozano-Pérez i Carlos A. Guerrero-Fajardo. "Insights of Fe2O3 and MoO3 Electrodes for Electrocatalytic CO2 Reduction in Aprotic Media". International Journal of Molecular Sciences 23, nr 21 (2.11.2022): 13367. http://dx.doi.org/10.3390/ijms232113367.
Pełny tekst źródłaJaiswal, A. K., R. Schneider, M. Le Tacon i D. Fuchs. "Magnetotransport of SrIrO3-based heterostructures". AIP Advances 12, nr 3 (1.03.2022): 035120. http://dx.doi.org/10.1063/9.0000325.
Pełny tekst źródłaKasinathan, Dhivyaprasath, Praveena Prabhakar, Preethi Muruganandam, Biny R. Wiston, Ashok Mahalingam i Ganesan Sriram. "Solution Processed NiO/MoS2 Heterostructure Nanocomposite for Supercapacitor Electrode Application". Energies 16, nr 1 (28.12.2022): 335. http://dx.doi.org/10.3390/en16010335.
Pełny tekst źródłaStylianakis, Minas M. "Optoelectronic Nanodevices". Nanomaterials 10, nr 3 (13.03.2020): 520. http://dx.doi.org/10.3390/nano10030520.
Pełny tekst źródłaSong, Ge, Shan Cong i Zhigang Zhao. "Defect engineering in semiconductor-based SERS". Chemical Science 13, nr 5 (2022): 1210–24. http://dx.doi.org/10.1039/d1sc05940h.
Pełny tekst źródłaKoshtyal, Yury, Ilya Mitrofanov, Denis Nazarov, Oleg Medvedev, Artem Kim, Ilya Ezhov, Aleksander Rumyantsev, Anatoly Popovich i Maxim Yu Maximov. "Atomic Layer Deposition of Ni-Co-O Thin-Film Electrodes for Solid-State LIBs and the Influence of Chemical Composition on Overcapacity". Nanomaterials 11, nr 4 (2.04.2021): 907. http://dx.doi.org/10.3390/nano11040907.
Pełny tekst źródłaMei, Jun, Yuanwen Zhang, Ting Liao, Ziqi Sun i Shi Xue Dou. "Strategies for improving the lithium-storage performance of 2D nanomaterials". National Science Review 5, nr 3 (21.07.2017): 389–416. http://dx.doi.org/10.1093/nsr/nwx077.
Pełny tekst źródłaBrowne, Michelle P., Joana M. Vasconcelos, João Coelho, Maria O'Brien, Aurelie A. Rovetta, Eoin K. McCarthy, Hugo Nolan i in. "Improving the performance of porous nickel foam for water oxidation using hydrothermally prepared Ni and Fe metal oxides". Sustainable Energy & Fuels 1, nr 1 (2017): 207–16. http://dx.doi.org/10.1039/c6se00032k.
Pełny tekst źródłaZuo, Wenhua, Guiliang Xu i Khalil Amine. "The Air Stability of Sodium Layered Oxide Cathodes". ECS Meeting Abstracts MA2022-02, nr 7 (9.10.2022): 2594. http://dx.doi.org/10.1149/ma2022-0272594mtgabs.
Pełny tekst źródłaSoheyli, Ehsan, Mohammad Hossein Hekmatshoar i Farshad Parcham. "Optical and structural characterization of quadruplet and quintuplet molybdenum-containing phosphate glasses". Modern Physics Letters B 30, nr 18 (10.07.2016): 1650270. http://dx.doi.org/10.1142/s0217984916502705.
Pełny tekst źródłaSiddiqui, Safina-E.-Tahura, Md Arafat Rahman, Jin-Hyuk Kim, Sazzad Bin Sharif i Sourav Paul. "A Review on Recent Advancements of Ni-NiO Nanocomposite as an Anode for High-Performance Lithium-Ion Battery". Nanomaterials 12, nr 17 (25.08.2022): 2930. http://dx.doi.org/10.3390/nano12172930.
Pełny tekst źródłaChen, Shuang, Shukun Wang, Yunyun Dong, Hongmei Du, Jinsheng Zhao i Pengfang Zhang. "Anchoring NiO Nanosheet on the Surface of CNT to Enhance the Performance of a Li-O2 Battery". Nanomaterials 12, nr 14 (13.07.2022): 2386. http://dx.doi.org/10.3390/nano12142386.
Pełny tekst źródłaIqbal, Sajid, Tanveer Hussain Bokhari, Shoomaila Latif, Muhammad Imran, Ayesha Javaid i Liviu Mitu. "Structural and Morphological Studies of V2O5/MWCNTs and ZrO2/MWCNTs Composites as Photocatalysts". Journal of Chemistry 2021 (18.05.2021): 1–11. http://dx.doi.org/10.1155/2021/9922726.
Pełny tekst źródłaLucovsky, G., D. Zeller i J. L. Whitten. "O-vacancies in transition metal (TM) oxides: Coordination and local site symmetry of transition and negative ion states in TM2O3 and TMO2 oxides". Microelectronic Engineering 88, nr 7 (lipiec 2011): 1471–74. http://dx.doi.org/10.1016/j.mee.2011.03.153.
Pełny tekst źródłaBasnet, Pradip, M. Arslan Shehzad i Xi-Bo Li. "Novel Synthesis and Applications of Metal, Metal Oxides (MOs), and Transition Metal Dichalcogenides (TMDs) for Energy, Sensing, and Memory Applications". Advances in Materials Science and Engineering 2019 (7.11.2019): 1–2. http://dx.doi.org/10.1155/2019/4163786.
Pełny tekst źródłaWu, Qiangqiang, Meizan Jing, Yuechang Wei, Zhen Zhao, Xindong Zhang, Jing Xiong, Jian Liu, Weiyu Song i Jianmei Li. "High-efficient catalysts of core-shell structured Pt@transition metal oxides (TMOs) supported on 3DOM-Al2O3 for soot oxidation: The effect of strong Pt-TMO interaction". Applied Catalysis B: Environmental 244 (maj 2019): 628–40. http://dx.doi.org/10.1016/j.apcatb.2018.11.094.
Pełny tekst źródłaAleithan, Shrouq H., Kawther Al-Amer, Zakia Alhashem, Nada A. Alati, Zainab H. Alabbad i Khan Alam. "Growth of MoS2 films: High-quality monolayered and multilayered material". AIP Advances 12, nr 7 (1.07.2022): 075220. http://dx.doi.org/10.1063/5.0086228.
Pełny tekst źródłaChen, Ying, Yuling Hu i Gongke Li. "A Review on Non-Noble Metal Substrates for Surface-Enhanced Raman Scattering Detection". Chemosensors 11, nr 8 (1.08.2023): 427. http://dx.doi.org/10.3390/chemosensors11080427.
Pełny tekst źródłaLu, Song, Fengliu Lou i Zhixin Yu. "Recent Progress in Two-Dimensional Materials for Electrocatalytic CO2 Reduction". Catalysts 12, nr 2 (17.02.2022): 228. http://dx.doi.org/10.3390/catal12020228.
Pełny tekst źródłaSuni, Ian Ivar. "Substrate Materials for Biomolecular Immobilization within Electrochemical Biosensors". Biosensors 11, nr 7 (15.07.2021): 239. http://dx.doi.org/10.3390/bios11070239.
Pełny tekst źródła