Spis treści
Gotowa bibliografia na temat „Transition Metal-NHC Complexes”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Transition Metal-NHC Complexes”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Transition Metal-NHC Complexes"
Winkelmann, Ole, Christian Näther i Ulrich Lüning. "Bimacrocyclic NHC transition metal complexes". Journal of Organometallic Chemistry 693, nr 6 (marzec 2008): 923–32. http://dx.doi.org/10.1016/j.jorganchem.2007.11.064.
Pełny tekst źródłaYamaguchi, Yoshitaka. "Synthesis of Transition-metal NHC Complexes using “Protected” NHC Adduct". Bulletin of Japan Society of Coordination Chemistry 52 (2008): 43–54. http://dx.doi.org/10.4019/bjscc.52.43.
Pełny tekst źródłaWeiss, Daniel T., Philipp J. Altmann, Stefan Haslinger, Christian Jandl, Alexander Pöthig, Mirza Cokoja i Fritz E. Kühn. "Structural diversity of late transition metal complexes with flexible tetra-NHC ligands". Dalton Transactions 44, nr 42 (2015): 18329–39. http://dx.doi.org/10.1039/c5dt02386f.
Pełny tekst źródłaYang, Shiyi, Tongliang Zhou, Xiang Yu i Michal Szostak. "Ag–NHC Complexes in the p-Activation of Alkynes". Molecules 28, nr 3 (18.01.2023): 950. http://dx.doi.org/10.3390/molecules28030950.
Pełny tekst źródłaVisbal, Renso, i M. Concepción Gimeno. "N-heterocyclic carbene metal complexes: photoluminescence and applications". Chem. Soc. Rev. 43, nr 10 (2014): 3551–74. http://dx.doi.org/10.1039/c3cs60466g.
Pełny tekst źródłaNeshat, Abdollah, Piero Mastrorilli i Ali Mousavizadeh Mobarakeh. "Recent Advances in Catalysis Involving Bidentate N-Heterocyclic Carbene Ligands". Molecules 27, nr 1 (24.12.2021): 95. http://dx.doi.org/10.3390/molecules27010095.
Pełny tekst źródłaSavchuk, Mariia, Lucas Bocquin, Muriel Albalat, Marion Jean, Nicolas Vanthuyne, Paola Nava, Stéphane Humbel, Damien Hérault i Hervé Clavier. "Transition metal complexes bearing atropisomeric saturated NHC ligands". Chirality 34, nr 1 (5.11.2021): 13–26. http://dx.doi.org/10.1002/chir.23378.
Pełny tekst źródłaScattolin, Thomas, i Steven P. Nolan. "Synthetic Routes to Late Transition Metal–NHC Complexes". Trends in Chemistry 2, nr 8 (sierpień 2020): 721–36. http://dx.doi.org/10.1016/j.trechm.2020.06.001.
Pełny tekst źródłaZhang, Dao, i Guofu Zi. "N-heterocyclic carbene (NHC) complexes of group 4 transition metals". Chemical Society Reviews 44, nr 7 (2015): 1898–921. http://dx.doi.org/10.1039/c4cs00441h.
Pełny tekst źródłaMesselberger, Julian, Annette Grünwald, Philipp Stegner, Laura Senft, Frank W. Heinemann i Dominik Munz. "Transmetalation from Magnesium–NHCs—Convenient Synthesis of Chelating π-Acidic NHC Complexes". Inorganics 7, nr 5 (22.05.2019): 65. http://dx.doi.org/10.3390/inorganics7050065.
Pełny tekst źródłaRozprawy doktorskie na temat "Transition Metal-NHC Complexes"
Andrew, Rhiann E. "Late transition metal complexes of NHC-based macrocycles". Thesis, University of Warwick, 2016. http://wrap.warwick.ac.uk/85928/.
Pełny tekst źródłaBerro, Patrick. "Exploring Photocatalytic and Electrocatalytic Reduction of CO2 with Re(I) and Zn(II) Complexes and Attempts to Employ a Novel Carbene Ligand to this Endeavor". Thesis, Université d'Ottawa / University of Ottawa, 2021. http://hdl.handle.net/10393/41625.
Pełny tekst źródłaHemming, Oliver. "Structure and reactivity of low-coordinate first-row transition metal complexes". Thesis, University of Manchester, 2018. https://www.research.manchester.ac.uk/portal/en/theses/structure-and-reactivity-of-lowcoordinate-firstrow-transition-metal-complexes(a7879b58-897e-4080-99f6-8551511a503a).html.
Pełny tekst źródłaKäß, Martina [Verfasser], i Karsten [Akademischer Betreuer] Meyer. "Late Transition Metal Complexes of Mixed NHC/Phenolate Tripodal Ligands for Small Molecule Activation / Martina Käß. Gutachter: Karsten Meyer". Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2014. http://d-nb.info/1075477379/34.
Pełny tekst źródłaWeiß, Daniel Traugott [Verfasser], Fritz E. [Akademischer Betreuer] Kühn i Richard W. [Akademischer Betreuer] Fischer. "Influence of Open Chain, Tetradentate NHC and NHC/Pyridine Hybrid Ligands on the Coordination and Electrochemistry of Late Transition Metal Complexes / Daniel Traugott Weiß. Betreuer: Fritz E. Kühn. Gutachter: Fritz E. Kühn ; Richard W. Fischer". München : Universitätsbibliothek der TU München, 2015. http://d-nb.info/1079974563/34.
Pełny tekst źródłaSchlagintweit, Jonas Felix [Verfasser], Fritz E. [Akademischer Betreuer] Kühn, Joao D. G. [Gutachter] Correia, Fritz E. [Gutachter] Kühn i Klaus [Gutachter] Köhler. "Transition Metal NHC Complexes in Oxidation Catalysis and Medicinal Chemistry / Jonas Felix Schlagintweit ; Gutachter: Joao D. G. Correia, Fritz E. Kühn, Klaus Köhler ; Betreuer: Fritz E. Kühn". München : Universitätsbibliothek der TU München, 2021. http://d-nb.info/1237815908/34.
Pełny tekst źródłaSimler, Thomas. "New transition metal complexes with functional N-heterocyclic carbene ligands for molecular activation". Thesis, Strasbourg, 2016. http://www.theses.fr/2016STRAF005.
Pełny tekst źródłaThe purpose of this work is the synthesis and study of hybrid and potentially “pincer” ligands featuring an N-heterocyclic carbene (NHC) donor. The phosphine-NHC ligands based on the m-phenylene framework led to di- or tetranuclear Ag, Cu, Au and Ir complexes, and to bimetallic Ag/Cu and Ag/Ir complexes by selective transmetallation of the NHC. With the phosphino-picoline-NHC (PNC) ligands, transmetallation from the corresponding Li or K salts led to dearomatised Cr, Fe and Co “pincer” complexes. Deprotonation of the bis(phosphinomethyl)pyridine (PNP) ligand was also examined. The corresponding dearomatised mono- and bis-anionic ligands were isolated as Li or K salts and further used in transmetallation reactions towards Cr(II) and Zr(IV). Different coordination modes of the dearomatised ligands, including side-arm metallation, were observed. Substitution of the phosphine group in PNC by an imine donor led to a hybrid and “redox non-innocent” ligand
Chang, I.-Hsin, i 張益信. "Heterotopic Bidentate NHC Ligands and Their Late Transition Metal Complexes-Synthesis and Catalysis". Thesis, 2010. http://ndltd.ncl.edu.tw/handle/79955598501757317683.
Pełny tekst źródła國立臺灣大學
化學研究所
98
In this thesis, the cationic rhodium (I) complexes bearing with hemilabile NHC bidentate ligands have been developed for the service as homogeneous catalysts using in the reactions such as hydrosilylation, hydroformylation, conjugate addition, and cycloaddition is studied. The cationic rhodium (I) complexes bearing NHC bidentate ligands in the form of [Rh(COD)LN-C]+X- or in the form of [Rh(COD)LS-C]+X- are successfully synthesized via transmetalation of silver NHC complex to cationic rhodium (I) metal source. The rhodium carbene carbon of the cationic rhodium (I) complexes (4a-4i) show 13C NMR resonance in 176.0-177.0 ppm and JRh-C = 53.0-54.0 Hz. The cationic rhodium (I) pyrimidyl NHC complexes display excellent catalytic activity for the hydrosilytion of acetophenones.(98% yield) The proton NMR of 4a shows the broad peaks in the COD and the singlet peak of the methylene protons of the thioether side arm at room temperature. To study the phenomenon in the solution containing 4a, the variable temperature NMR spectra are measured. According to the Gutowsky-Holm relationship24 and Eyring equation, the free energy of the sulfur inversion can be calculated in 48.61 KJmol-1. The rhodium (I) thioether NHC complexes can be effective catalysts for hydroformylation of aromatic or aliphatic olefins, but the selectivity of linear/branch aldehydes is fair (the ratio of linear/branch is almost 1). By adding phosphines, we can tune the ratio of linear/branch to be all branched aldehyde but the conversion is low (25% conversion). We can reduce the pressure of syn gas (H2/CO=1/1) to 300 psi instead of high pressure (1000 psi). The conversion of the hydroformylation can be quantitative and the ratio of the linear/branched aldehyde can be 0.93-1.23. The rhodium (I) thioether NHC complexes are efficient catalysts for the conjugate addition of boronic acids to enones. The catalyst loading was reduced to 0.5 mol% instead of the 3 mol% catalyst loading. The electron deficient or electron rich aryl boronic acids cannot retard the reaction. In spite of the bulky substituent such as o-methoxyphenyl boronic acid, the yield of Michael addition product was obtained in quantitative yield (98%). If thiol replaced the boronic acid, the thia- Michael addition can also be excellent yied (95%) by using rhodium thioether carbene catalyst. [2+2+2] Cycloaddition of DEAD or DMAD can be achieved in aqueous solution by using rhodium (I) thioether carbene catalyst. The DEAD and diyne can be different alkyne moiety and cyclotrimerize to form the cyclic benezene derivative. Pd (II) complexes bearing bidentate pyrimidyl-N-heterocyclic carbene ligands in the form of [LN-C]PdCl2 (LN-C = 2-pyrimidyl-imidazolylidene-NR, R = Me (5a), PhCH2 (5b), 2,6-Me2C6H3 (5d), 2,4,6-Me3C6H2 (5c)) have been synthesized and structurally characterized. The pyrimidyl-NHC ligand can facilitate these complexes for Suzuki-Miyaura cross coupling of aryl bromides and boronic acids.
Holtz-Mulholland, Michael. "Synthesis of transition metal N-heterocyclic carbene complexes and applications in catalysis". Thèse, 2014. http://hdl.handle.net/1866/11407.
Pełny tekst źródłaA new class of C1-symmetric N-heterocyclic carbene (NHC) ligands has been developed. The new ligands exploit a biaryl methyne as a chiral relay, and an N-methyl group as a reactivity controlling element. The precursors for the new ligands were synthesized via a modular scheme that allows for facile diversification. Several of the new ligands were installed onto both copper and gold, generating mono N-heterocyclic carbene transition metal complexes. The new C1-symmetric copper complexes were tested as catalysts for the synthesis of binaphthols via the oxidative coupling of electron poor 2-naphthols. The new C1-symmetric ligands afforded higher yields than their C2-symmetric counterparts. During the course of the optimization, small molecule additives were found to modulate the reactivity of the copper catalyst. Pyridine additives, such as 2-picoline, were found to induce low to moderate enantioselectivity in the oxidative coupling reaction, while diethylmalonate was found to improve the reaction yield without affecting the selectivity. The malonate additive was employed in the catalytic oxidative heterocoupling of electronically dissimilar 2-naphthols. The electron-rich coupling partner is normally added in a large excess due to its tendency to degrade. When the malonate additive is used, the coupling partners can be used in equimolar quantities. The discovery resulted in the development of a general protocol for the additive assisted aerobic oxidative heterocoupling of electronically dissimilar 2-naphthols.
Części książek na temat "Transition Metal-NHC Complexes"
Manna, Arunava, Abhineet Verma, Sumit K. Panja i Satyen Saha. "Recent Development of Carbenes: Synthesis, Structure, Photophysical Properties and Applications". W Carbene. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.101413.
Pełny tekst źródłaOtt, I. "Medicinal Chemistry of Metal N-Heterocyclic Carbene (NHC) Complexes". W Inorganic and Organometallic Transition Metal Complexes with Biological Molecules and Living Cells, 147–79. Elsevier, 2017. http://dx.doi.org/10.1016/b978-0-12-803814-7.00005-8.
Pełny tekst źródła