Artykuły w czasopismach na temat „Transition metal dichalcogenide (TMD)”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Transition metal dichalcogenide (TMD)”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Chhowalla, Manish, Zhongfan Liu i Hua Zhang. "Two-dimensional transition metal dichalcogenide (TMD) nanosheets". Chemical Society Reviews 44, nr 9 (2015): 2584–86. http://dx.doi.org/10.1039/c5cs90037a.
Pełny tekst źródłaZhang, Xiao, Zhuangchai Lai, Qinglang Ma i Hua Zhang. "Novel structured transition metal dichalcogenide nanosheets". Chemical Society Reviews 47, nr 9 (2018): 3301–38. http://dx.doi.org/10.1039/c8cs00094h.
Pełny tekst źródłaCherusseri, Jayesh, Nitin Choudhary, Kowsik Sambath Kumar, Yeonwoong Jung i Jayan Thomas. "Recent trends in transition metal dichalcogenide based supercapacitor electrodes". Nanoscale Horizons 4, nr 4 (2019): 840–58. http://dx.doi.org/10.1039/c9nh00152b.
Pełny tekst źródłaRajabi Kouchi, Fereshteh, Tony Valayil Varghese, Josh Eixenberger, Amin Salehi-Khojin i David Estrada. "Synthesis and Formulation of Ternary Transition Metal Dichalcogenide Alloys for Additive Electronic Manufacturing". ECS Meeting Abstracts MA2023-01, nr 16 (28.08.2023): 1451. http://dx.doi.org/10.1149/ma2023-01161451mtgabs.
Pełny tekst źródłaYeh, Chen-Hao, Yu-Tang Chen i Dah-Wei Hsieh. "Effects of external electric field on the sensing property of volatile organic compounds over Janus MoSSe monolayer: a first-principles investigation". RSC Advances 11, nr 53 (2021): 33276–87. http://dx.doi.org/10.1039/d1ra05764b.
Pełny tekst źródłaGao, Chan, Xiaoyong Yang, Ming Jiang, Lixin Chen, Zhiwen Chen i Chandra Veer Singh. "Machine learning-enabled band gap prediction of monolayer transition metal chalcogenide alloys". Physical Chemistry Chemical Physics 24, nr 7 (2022): 4653–65. http://dx.doi.org/10.1039/d1cp05847a.
Pełny tekst źródłaZhang, Hanyu, Jaehoon Ji, Adalberto A. Gonzalez i Jong Hyun Choi. "Tailoring photoelectrochemical properties of semiconducting transition metal dichalcogenide nanolayers with porphyrin functionalization". Journal of Materials Chemistry C 5, nr 43 (2017): 11233–38. http://dx.doi.org/10.1039/c7tc02861j.
Pełny tekst źródłaZhao, Wen, Yuanchang Li, Wenhui Duan i Feng Ding. "Ultra-stable small diameter hybrid transition metal dichalcogenide nanotubes X–M–Y (X, Y = S, Se, Te; M = Mo, W, Nb, Ta): a computational study". Nanoscale 7, nr 32 (2015): 13586–90. http://dx.doi.org/10.1039/c5nr02812d.
Pełny tekst źródłaLee, Hyebin, Kookjin Lee, Yanghee Kim, Hyunjin Ji, Junhee Choi, Minsik Kim, Jae-Pyoung Ahn i Gyu-Tae Kim. "Transfer of transition-metal dichalcogenide circuits onto arbitrary substrates for flexible device applications". Nanoscale 11, nr 45 (2019): 22118–24. http://dx.doi.org/10.1039/c9nr05065e.
Pełny tekst źródłaChen, Ruo-Si, Guanglong Ding, Ye Zhou i Su-Ting Han. "Fermi-level depinning of 2D transition metal dichalcogenide transistors". Journal of Materials Chemistry C 9, nr 35 (2021): 11407–27. http://dx.doi.org/10.1039/d1tc01463c.
Pełny tekst źródłaChoudhury, Tanushree H., Xiaotian Zhang, Zakaria Y. Al Balushi, Mikhail Chubarov i Joan M. Redwing. "Epitaxial Growth of Two-Dimensional Layered Transition Metal Dichalcogenides". Annual Review of Materials Research 50, nr 1 (1.07.2020): 155–77. http://dx.doi.org/10.1146/annurev-matsci-090519-113456.
Pełny tekst źródłaEroglu, Zeynep Ezgi, Olivia Comegys, Leo S. Quintanar, Nurul Azam, Salah Elafandi, Masoud Mahjouri-Samani i Abdelaziz Boulesbaa. "Ultrafast dynamics of exciton formation and decay in two-dimensional tungsten disulfide (2D-WS2) monolayers". Physical Chemistry Chemical Physics 22, nr 30 (2020): 17385–93. http://dx.doi.org/10.1039/d0cp03220d.
Pełny tekst źródłaWang, Tao, Xiaoxing Tan, Yadong Wei i Hao Jin. "Unveiling the layer-dependent electronic properties in transition-metal dichalcogenide heterostructures assisted by machine learning". Nanoscale 14, nr 6 (2022): 2511–20. http://dx.doi.org/10.1039/d1nr07747c.
Pełny tekst źródłaWang, Zhendong, Hang Yang, Sihong Zhang, Jianyu Wang, Kai Cao, Yan Lu, Weiwei Hou, Shouhui Guo, Xue-Ao Zhang i Li Wang. "An approach to high-throughput growth of submillimeter transition metal dichalcogenide single crystals". Nanoscale 11, nr 46 (2019): 22440–45. http://dx.doi.org/10.1039/c9nr07496a.
Pełny tekst źródłaCao, Xuanyu, Caiping Ding, Cuiling Zhang, Wei Gu, Yinghan Yan, Xinhao Shi i Yuezhong Xian. "Transition metal dichalcogenide quantum dots: synthesis, photoluminescence and biological applications". Journal of Materials Chemistry B 6, nr 48 (2018): 8011–36. http://dx.doi.org/10.1039/c8tb02519c.
Pełny tekst źródłaHuang, Pu, Zhuang Ma, Gui Wang, Wen Xiong, Peng Zhang, Yiling Sun, Zhengfang Qian i Xiuwen Zhang. "Origin of the enhanced edge optical transition in transition metal dichalcogenide flakes". Journal of Materials Chemistry C 10, nr 13 (2022): 5303–10. http://dx.doi.org/10.1039/d2tc00078d.
Pełny tekst źródłaZhang, Yang, Trithep Devakul i Liang Fu. "Spin-textured Chern bands in AB-stacked transition metal dichalcogenide bilayers". Proceedings of the National Academy of Sciences 118, nr 36 (2.09.2021): e2112673118. http://dx.doi.org/10.1073/pnas.2112673118.
Pełny tekst źródłaNapoleonov, B., D. Petrova, P. Rafailov, V. Videva, V. Strijkova, D. Karashanova, D. Dimitrov i V. Marinova. "Growth of 2D MoS2 on sapphire and mica". Journal of Physics: Conference Series 2710, nr 1 (1.02.2024): 012016. http://dx.doi.org/10.1088/1742-6596/2710/1/012016.
Pełny tekst źródłaConti, Sara, David Neilson, François M. Peeters i Andrea Perali. "Transition Metal Dichalcogenides as Strategy for High Temperature Electron-Hole Superfluidity". Condensed Matter 5, nr 1 (22.03.2020): 22. http://dx.doi.org/10.3390/condmat5010022.
Pełny tekst źródłaKazemi, Seyedeh Alieh, Sadegh Imani Yengejeh, Vei Wang, William Wen i Yun Wang. "Theoretical understanding of electronic and mechanical properties of 1T′ transition metal dichalcogenide crystals". Beilstein Journal of Nanotechnology 13 (2.02.2022): 160–71. http://dx.doi.org/10.3762/bjnano.13.11.
Pełny tekst źródłaRedwing, Joan M. "(Invited) Epitaxial Growth of Transition Metal Dichalcogenide Monolayers for Large Area Device Applications". ECS Meeting Abstracts MA2022-02, nr 15 (9.10.2022): 824. http://dx.doi.org/10.1149/ma2022-0215824mtgabs.
Pełny tekst źródłaWei, Wei, Ying Dai i Baibiao Huang. "In-plane interfacing effects of two-dimensional transition-metal dichalcogenide heterostructures". Physical Chemistry Chemical Physics 18, nr 23 (2016): 15632–38. http://dx.doi.org/10.1039/c6cp02741e.
Pełny tekst źródłaLu, Ning, Hongyan Guo, Lei Li, Jun Dai, Lu Wang, Wai-Ning Mei, Xiaojun Wu i Xiao Cheng Zeng. "MoS2/MX2 heterobilayers: bandgap engineering via tensile strain or external electrical field". Nanoscale 6, nr 5 (2014): 2879–86. http://dx.doi.org/10.1039/c3nr06072a.
Pełny tekst źródłaGupta, Neelam, Saurav Sachin, Puja Kumari, Shivani Rani i Soumya Jyoti Ray. "Twistronics in two-dimensional transition metal dichalcogenide (TMD)-based van der Waals interface". RSC Advances 14, nr 5 (2024): 2878–88. http://dx.doi.org/10.1039/d3ra06559f.
Pełny tekst źródłaKaviraj, Bhaskar, i Dhirendra Sahoo. "Physics of excitons and their transport in two dimensional transition metal dichalcogenide semiconductors". RSC Advances 9, nr 44 (2019): 25439–61. http://dx.doi.org/10.1039/c9ra03769a.
Pełny tekst źródłaLi, Mingchen, Mingsheng Gao, Qing Zhang i Yuanjie Yang. "Valley-dependent vortex emission from exciton-polariton in non-centrosymmetric transition metal dichalcogenide metasurfaces". Optics Express 31, nr 12 (26.05.2023): 19622. http://dx.doi.org/10.1364/oe.490067.
Pełny tekst źródłaManiyar, Ashraf, i Sudhanshu Choudhary. "Visible region absorption in TMDs/phosphorene heterostructures for use in solar energy conversion applications". RSC Advances 10, nr 53 (2020): 31730–39. http://dx.doi.org/10.1039/d0ra05810f.
Pełny tekst źródłaChen, Zhigang, Zhengxu Tao, Shan Cong, Junyu Hou, Dengsong Zhang, Fengxia Geng i Zhigang Zhao. "Fast preparation of ultrafine monolayered transition-metal dichalcogenide quantum dots using electrochemical shock for explosive detection". Chemical Communications 52, nr 76 (2016): 11442–45. http://dx.doi.org/10.1039/c6cc06325j.
Pełny tekst źródłaHemanth, N. R., Taekyung Kim, Byeongyoon Kim, Arvind H. Jadhav, Kwangyeol Lee i Nitin K. Chaudhari. "Transition metal dichalcogenide-decorated MXenes: promising hybrid electrodes for energy storage and conversion applications". Materials Chemistry Frontiers 5, nr 8 (2021): 3298–321. http://dx.doi.org/10.1039/d1qm00035g.
Pełny tekst źródłaJo, S. H., i J. H. Park. "High-Performance Photodetectors Using Transition Metal Dichalcogenide (TMD)-based Hybrid Structures". ECS Transactions 75, nr 13 (23.09.2016): 73–77. http://dx.doi.org/10.1149/07513.0073ecst.
Pełny tekst źródłaMukherjee, Santanu, Jonathan Turnley, Elisabeth Mansfield, Jason Holm, Davi Soares, Lamuel David i Gurpreet Singh. "Exfoliated transition metal dichalcogenide nanosheets for supercapacitor and sodium ion battery applications". Royal Society Open Science 6, nr 8 (sierpień 2019): 190437. http://dx.doi.org/10.1098/rsos.190437.
Pełny tekst źródłaChen, Hang, Tianjiao Liu, Zhiqiang Su, Li Shang i Gang Wei. "2D transition metal dichalcogenide nanosheets for photo/thermo-based tumor imaging and therapy". Nanoscale Horizons 3, nr 2 (2018): 74–89. http://dx.doi.org/10.1039/c7nh00158d.
Pełny tekst źródłaShim, Jaewoo, Sung woon Jang, Ji-Hye Lim, Hyeongjun Kim, Dong-Ho Kang, Kwan-Ho Kim, Seunghwan Seo i in. "Polarity control in a single transition metal dichalcogenide (TMD) transistor for homogeneous complementary logic circuits". Nanoscale 11, nr 27 (2019): 12871–77. http://dx.doi.org/10.1039/c9nr03441b.
Pełny tekst źródłaWang, Zhen-Hua, Fuming Xu, Lin Li, Dong-Hui Xu, Wei-Qiang Chen, Bin Wang i Hong Guo. "Spin–orbit proximity effect and topological superconductivity in graphene/transition-metal dichalcogenide nanoribbons". New Journal of Physics 23, nr 12 (1.12.2021): 123002. http://dx.doi.org/10.1088/1367-2630/ac33f5.
Pełny tekst źródłaGoswami, P., i U. P. Tyagi. "Graphene-TMD Van der Waals Heterostucture Plasmonics". Journal of Scientific Research 12, nr 2 (1.02.2020): 169–74. http://dx.doi.org/10.3329/jsr.v12i2.43685.
Pełny tekst źródłaZhou, Hongzhi, Yuzhong Chen i Haiming Zhu. "Deciphering asymmetric charge transfer at transition metal dichalcogenide–graphene interface by helicity-resolved ultrafast spectroscopy". Science Advances 7, nr 34 (sierpień 2021): eabg2999. http://dx.doi.org/10.1126/sciadv.abg2999.
Pełny tekst źródłaIvanova, Tatiana V., Dmitry Permyakov i Ekaterina Khestanova. "Mechanical deformation of atomically thin layers during stamp transfer". Journal of Physics: Conference Series 2015, nr 1 (1.11.2021): 012058. http://dx.doi.org/10.1088/1742-6596/2015/1/012058.
Pełny tekst źródłaSu, Yuyu, Dan Liu, Guoliang Yang, Qi Han, Yijun Qian, Yuchen Liu, Lifeng Wang, Joselito M. Razal i Weiwei Lei. "Transition Metal Dichalcogenide (TMD) Membranes with Ultrasmall Nanosheets for Ultrafast Molecule Separation". ACS Applied Materials & Interfaces 12, nr 40 (15.09.2020): 45453–59. http://dx.doi.org/10.1021/acsami.0c10653.
Pełny tekst źródłaXIE, MAOHAI, i JINGLEI CHEN. "A SCANNING TUNNELING MICROSCOPY STUDY OF MONOLAYER AND BILAYER TRANSITION-METAL DICHALCOGENIDES GROWN BY MOLECULAR-BEAM EPITAXY". Surface Review and Letters 25, Supp01 (grudzień 2018): 1841002. http://dx.doi.org/10.1142/s0218625x18410020.
Pełny tekst źródłaSchmidt, Hennrik, Francesco Giustiniano i Goki Eda. "Electronic transport properties of transition metal dichalcogenide field-effect devices: surface and interface effects". Chemical Society Reviews 44, nr 21 (2015): 7715–36. http://dx.doi.org/10.1039/c5cs00275c.
Pełny tekst źródłaSushko, Andrey, Kristiaan De Greve, Madeleine Phillips, Bernhard Urbaszek, Andrew Y. Joe, Kenji Watanabe, Takashi Taniguchi i in. "Asymmetric photoelectric effect: Auger-assisted hot hole photocurrents in transition metal dichalcogenides". Nanophotonics 10, nr 1 (25.09.2020): 105–13. http://dx.doi.org/10.1515/nanoph-2020-0397.
Pełny tekst źródłaBendavid, Leah Isseroff, Yilin Zhong, Ziyi Che i Yagmur Konuk. "Strain-engineering in two-dimensional transition metal dichalcogenide alloys". Journal of Applied Physics 132, nr 22 (14.12.2022): 225303. http://dx.doi.org/10.1063/5.0120484.
Pełny tekst źródłaAhmadi, Mojtaba, Omid Zabihi, Seokwoo Jeon, Mitra Yoonessi, Aravind Dasari, Seeram Ramakrishna i Minoo Naebe. "2D transition metal dichalcogenide nanomaterials: advances, opportunities, and challenges in multi-functional polymer nanocomposites". Journal of Materials Chemistry A 8, nr 3 (2020): 845–83. http://dx.doi.org/10.1039/c9ta10130f.
Pełny tekst źródłaLi, Dehui, Yingying Chen, Wendian Yao, Zeyi Liu i Dong Yang. "(Invited) Interlayer Excitons in Two-Dimensional Perovskite/Monolayer Transition Metal Dichalcogenide Heterostructures". ECS Meeting Abstracts MA2023-02, nr 34 (22.12.2023): 1639. http://dx.doi.org/10.1149/ma2023-02341639mtgabs.
Pełny tekst źródłaLee, Jaeho, Jaehwan Lee, Seokwon Shin, Youngdoo Son i Young-Kyu Han. "Machine Learning for the Expedited Screening of Hydrogen Evolution Catalysts for Transition Metal-Doped Transition Metal Dichalcogenides". International Journal of Energy Research 2023 (8.09.2023): 1–11. http://dx.doi.org/10.1155/2023/6612054.
Pełny tekst źródłaJiang, Dongting, Zhiyuan Liu, Zhe Xiao, Zhengfang Qian, Yiling Sun, Zhiyuan Zeng i Renheng Wang. "Flexible electronics based on 2D transition metal dichalcogenides". Journal of Materials Chemistry A 10, nr 1 (2022): 89–121. http://dx.doi.org/10.1039/d1ta06741a.
Pełny tekst źródłaDanilyuk, Alexander L., Denis A. Podryabinkin, Victor L. Shaposhnikov i Serghej L. Prischepa. "Charge Critical Phenomena in a Field Heterostructure with Two-Dimensional Crystal". Solids 5, nr 2 (6.04.2024): 193–207. http://dx.doi.org/10.3390/solids5020013.
Pełny tekst źródłaVogl, Michael, Swati Chaudhary i Gregory A. Fiete. "Light driven magnetic transitions in transition metal dichalcogenide heterobilayers". Journal of Physics: Condensed Matter, 13.12.2022. http://dx.doi.org/10.1088/1361-648x/acab49.
Pełny tekst źródłaNassiri Nazif, Koosha, Frederick U. Nitta, Alwin Daus, Krishna C. Saraswat i Eric Pop. "Efficiency limit of transition metal dichalcogenide solar cells". Communications Physics 6, nr 1 (20.12.2023). http://dx.doi.org/10.1038/s42005-023-01447-y.
Pełny tekst źródłaMunkhbat, Battulga, Andrew B. Yankovich, Denis G. Baranov, Ruggero Verre, Eva Olsson i Timur O. Shegai. "Transition metal dichalcogenide metamaterials with atomic precision". Nature Communications 11, nr 1 (14.09.2020). http://dx.doi.org/10.1038/s41467-020-18428-2.
Pełny tekst źródła