Gotowa bibliografia na temat „Transition metal dichalcogenide (TMD)”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Transition metal dichalcogenide (TMD)”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Transition metal dichalcogenide (TMD)"
Chhowalla, Manish, Zhongfan Liu i Hua Zhang. "Two-dimensional transition metal dichalcogenide (TMD) nanosheets". Chemical Society Reviews 44, nr 9 (2015): 2584–86. http://dx.doi.org/10.1039/c5cs90037a.
Pełny tekst źródłaZhang, Xiao, Zhuangchai Lai, Qinglang Ma i Hua Zhang. "Novel structured transition metal dichalcogenide nanosheets". Chemical Society Reviews 47, nr 9 (2018): 3301–38. http://dx.doi.org/10.1039/c8cs00094h.
Pełny tekst źródłaCherusseri, Jayesh, Nitin Choudhary, Kowsik Sambath Kumar, Yeonwoong Jung i Jayan Thomas. "Recent trends in transition metal dichalcogenide based supercapacitor electrodes". Nanoscale Horizons 4, nr 4 (2019): 840–58. http://dx.doi.org/10.1039/c9nh00152b.
Pełny tekst źródłaRajabi Kouchi, Fereshteh, Tony Valayil Varghese, Josh Eixenberger, Amin Salehi-Khojin i David Estrada. "Synthesis and Formulation of Ternary Transition Metal Dichalcogenide Alloys for Additive Electronic Manufacturing". ECS Meeting Abstracts MA2023-01, nr 16 (28.08.2023): 1451. http://dx.doi.org/10.1149/ma2023-01161451mtgabs.
Pełny tekst źródłaYeh, Chen-Hao, Yu-Tang Chen i Dah-Wei Hsieh. "Effects of external electric field on the sensing property of volatile organic compounds over Janus MoSSe monolayer: a first-principles investigation". RSC Advances 11, nr 53 (2021): 33276–87. http://dx.doi.org/10.1039/d1ra05764b.
Pełny tekst źródłaGao, Chan, Xiaoyong Yang, Ming Jiang, Lixin Chen, Zhiwen Chen i Chandra Veer Singh. "Machine learning-enabled band gap prediction of monolayer transition metal chalcogenide alloys". Physical Chemistry Chemical Physics 24, nr 7 (2022): 4653–65. http://dx.doi.org/10.1039/d1cp05847a.
Pełny tekst źródłaZhang, Hanyu, Jaehoon Ji, Adalberto A. Gonzalez i Jong Hyun Choi. "Tailoring photoelectrochemical properties of semiconducting transition metal dichalcogenide nanolayers with porphyrin functionalization". Journal of Materials Chemistry C 5, nr 43 (2017): 11233–38. http://dx.doi.org/10.1039/c7tc02861j.
Pełny tekst źródłaZhao, Wen, Yuanchang Li, Wenhui Duan i Feng Ding. "Ultra-stable small diameter hybrid transition metal dichalcogenide nanotubes X–M–Y (X, Y = S, Se, Te; M = Mo, W, Nb, Ta): a computational study". Nanoscale 7, nr 32 (2015): 13586–90. http://dx.doi.org/10.1039/c5nr02812d.
Pełny tekst źródłaLee, Hyebin, Kookjin Lee, Yanghee Kim, Hyunjin Ji, Junhee Choi, Minsik Kim, Jae-Pyoung Ahn i Gyu-Tae Kim. "Transfer of transition-metal dichalcogenide circuits onto arbitrary substrates for flexible device applications". Nanoscale 11, nr 45 (2019): 22118–24. http://dx.doi.org/10.1039/c9nr05065e.
Pełny tekst źródłaChen, Ruo-Si, Guanglong Ding, Ye Zhou i Su-Ting Han. "Fermi-level depinning of 2D transition metal dichalcogenide transistors". Journal of Materials Chemistry C 9, nr 35 (2021): 11407–27. http://dx.doi.org/10.1039/d1tc01463c.
Pełny tekst źródłaRozprawy doktorskie na temat "Transition metal dichalcogenide (TMD)"
Gorini, Lorenzo. "Electrical contact properties of ultrathin transition metal dichalcogenide sheets". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/16884/.
Pełny tekst źródłaChoukroun, Jean. "Theoretical sStudy of In-plane Heterojunctions of Transition-metal Dichalcogenides and their Applications for Low-power Transistors". Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS557/document.
Pełny tekst źródłaNowadays, microprocessors can contain tens of billions of transistors and as a result, heat dissipation and its impact on device performance has increasingly become a hindrance to further scaling. Due to their working mechanism, the power supply of MOSFETs cannot be reduced without deteriorating overall performance, and Si-MOSFETs scaling therefore seems to be reaching its end. New architectures such as the TFET, which can perform at low supply voltages thanks to its reliance on band-to-band tunneling, and new materials could solve this issue. Transition metal dichalcogenide monolayers (TMDs) are 2D semiconductors with direct band gaps ranging from 1 to 2 eV, and therefore hold potential in electronics and photonics. Moreover, when under appropriate strains, their band alignment can result in broken-gap configurations which can circumvent the traditionally low currents observed in TFETs due to the tunneling mechanism they rely upon. In this work, in-plane TMD heterojunctions are investigated using an atomistic tight-binding approach, two of which lead to a broken-gap configuration (MoTe2/MoS2 and WTe2/MoS2). The potential of these heterojunctions for use in tunnel field-effect transistors (TFETs) is evaluated via quantum transport computations based on an atomistic tight-binding model and the non-equilibrium Green’s function theory. Both p-type and n-type TFETs based on these in-plane TMD heterojunctions are shownto yield high ON currents (ION > 103 µA/µm) and extremely low subthreshold swings (SS < 5 mV/dec) at low supply voltages (VDD = 0.3 V). Innovative device architectures allowed by the 2D nature of these materials are also proposed, and shown to enhance performance even further
Plumadore, Ryan. "Study of Two Dimensional Materials by Scanning Probe Microscopy". Thesis, Université d'Ottawa / University of Ottawa, 2019. http://hdl.handle.net/10393/38637.
Pełny tekst źródłaZeng, Xiaoling [Verfasser], Veit [Akademischer Betreuer] Wagner, Veit [Gutachter] Wagner, Thomas [Gutachter] Heine i Marko [Gutachter] Marinkovic. "Solution Processed 2D Transition Metal Dichalcogenides and Electrical Properties of TMD Thin Film Transistors / Xiaoling Zeng ; Gutachter: Veit Wagner, Thomas Heine, Marko Marinkovic ; Betreuer: Veit Wagner". Bremen : IRC-Library, Information Resource Center der Jacobs University Bremen, 2017. http://d-nb.info/1148104011/34.
Pełny tekst źródłaTěšík, Jan. "Luminiscence polovodičů studovaná rastrovací optickou mikroskopií v blízkém poli". Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2017. http://www.nusl.cz/ntk/nusl-320110.
Pełny tekst źródłaDesgué, Eva. "Control of structural and electrical properties of bilayer to multilayer PtSe₂ films grown by molecular beam epitaxy for high-performance optoelectronic devices". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP170.
Pełny tekst źródłaPtSe₂ is a 2D material from the transition metal dichalcogenide (TMD) family that exhibits outstanding intrinsic properties: high charge carrier mobility (200 - 450 cm².(V.s)⁻¹), tunable bandgap with the number of monolayers (MLs), broadband optical absorption and excellent air stability. These properties are ideally suited for (opto)electronic applications. However, the growth of high crystalline quality PtSe₂ on low-cost and insulating substrates remains a major challenge. Here, the synthesis of bilayer to multilayer PtSe₂ films (< 20 MLs) by molecular beam epitaxy (MBE) is optimized on a sapphire substrate. The systematic characterizations include electron diffraction (RHEED), Raman spectroscopy, energy dispersive X-ray spectroscopy (EDX) and electrical conductivity measurements. For thick semimetallic PtSe₂ films, we demonstrate that high growth (520°C) and annealing (690°C) temperatures, combined with a high selenium flux (Ф(Se) = 0.5 Å.s⁻¹; Ф(Se)/Ф(Pt) ~ 170), leads to high crystalline quality and high electrical conductivity. In particular, the effect of the post-growth annealing on the structural properties of the thick films is investigated using X-ray diffraction (XRD) and transmission electron microscopy (STEM). We show that non-annealed PtSe₂ films consist of a 3D random distribution of superimposed domains with different in-plane orientations, while the annealed films consist of a 2D network of single-crystalline domains along the c-axis. In other words, non-annealed films have domains with a thickness smaller than that of the film and are composed of both semiconducting and semimetallic phases, resulting in low electrical conductivity (0.5 mS). In contrast, the annealed films are composed solely of quasi-single-crystalline and semimetallic domains, and exhibit high conductivity, up to 1.6 mS. We also show that the commonly used crystalline quality indicator, which is the full width at half maximum (FWHM) of the Eg Raman peak, becomes a reliable metric only when it is studied in conjunction with the FWHM of the A1g Raman peak. We demonstrate that the lower the FWHM of both the Eg and A1g peaks, the higher the crystalline quality of the in-plane and out-of-plane PtSe₂ films, respectively, and the higher the electrical conductivity. For semiconducting PtSe₂ bilayer films, high crystalline quality films with Eg and A1g FWHM values comparable to those of exfoliated crystals are obtained using a periodic Pt flux (periodic supply epitaxy). The bilayer to multilayer PtSe₂ films are not monocrystalline but present a fiber texture along the c-axis, which is typical on a sapphire substrate. The epitaxy of a thick PtSe₂ film on vicinal sapphire surfaces (steps) is demonstrated for the first time. Finally, we fabricated optoelectronic devices operating at 1.55 µm, the typical wavelength of optical fiber telecommunications. They are based on thick semi-metallic PtSe₂, exhibiting high electrical conductivity and good optical absorption at 1.55 µm, which is directly synthesized on a 2-inch sapphire substrate. We demonstrate PtSe₂-based photodetectors with a record bandwidth of 60 GHz and the first TMD-based optoelectronic mixer with, in addition, a bandwidth larger than 30 GHz
Hart, Lewis. "Novel transition metal dichalcogenide semiconductors and heterostructures". Thesis, University of Bath, 2018. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.760986.
Pełny tekst źródłaMcCormick, Elizabeth Joan McCormick. "Optical Properties of Two Dimensional Semiconductors". The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1531907387651019.
Pełny tekst źródłaMorell, Bennasser Nicolás. "Optomechanical resonators based on transition metal dichalcogenide monolayers". Doctoral thesis, Universitat Politècnica de Catalunya, 2018. http://hdl.handle.net/10803/664927.
Pełny tekst źródłaLos dicalcogenuros de metal de transición (TMD) monocapa suspendidos combinan una masa ultrabaja y propiedades ópticas excepcionales, lo que los convierte en materiales intrigantes para aplicaciones opto-mecánicas. Sin embargo, el bajo factor de calidad Q medido en los resonadores de TMD ha sido un obstáculo hasta ahora. En esta tesis, primero mostramos una lectura óptica ultra sensible de resonadores TMD de monocapa que nos permite revelar sus propiedades mecánicas a temperaturas criogénicas. Encontramos que el factor de calidad de los resonadores WSe2 monocapa aumenta considerablemente por debajo de la temperatura ambiente, alcanzando valores tan altos como 1.6 x 104 en temperatura de nitrógeno líquido y 4.7 x 104 en temperatura de helio líquido. Esto supera el factor de calidad de los resonadores de grafeno monocapa con áreas de superficie similares. Al enfriar el resonador, la frecuencia de resonancia aumenta significativamente debido a la contracción térmica la red del cristal de WSe2. Estas mediciones nos permiten estudiar experimentalmente el coeficiente de expansión térmica de las monocapas de WSe2 por primera vez. Los altos factores Q también se encuentran en los resonadores basados en las monocapas de MoS2 y MoSe2. El alto factor de calidad que se encuentra en este trabajo abre nuevas posibilidades para acoplar estados vibracionales mecánicos a excitones bidimensionales, valley pseudo-spins y emisores cuánticos únicos y para experimentos opto-mecánicos cuánticos basados en la interacción de Casimir. Las capacidades de detección ofrecidas por este nano-resonador mecánico de alto factor Q también son interesantes para estudiar propiedades termodinámicas en regímenes de la materia condensada a los que es difícil acceder. En la segunda parte de la tesis, utilizamos sistemas optomecánicos basados en una monocapa de MoSe2 para probar las propiedades térmicas de los fonones en redes de cristales bidimensionales. Medimos la conductividad térmica y la capacidad calorífica específica hasta temperaturas criogénicas. Los régimenes de transporte de fonones pasan de el difuso al balístico al bajar la temperatura por debajo de 100 K. La dependencia de la temperatura de la capacidad calorífica específica se aproxima a una dependencia cuadrática, lo cual es la firma de las redes bidimensionales. Tanto la conductividad térmica como las mediciones de la capacidad calorífica específica son coherentes con las predicciones basadas en primeros principios. Nuestro resultado establece una nueva estrategia para investigar el transporte térmico en materiales bidimensionales y permite explorar el régimen hidrodinámico de fonones, la conducción de calor anómala y las transiciones de fase de los fenómenos colectivos de cuerpos electrónicos en monocapas.
Ilic, Stefan. "Quantum coherent phenomena in disordered transition metal dichalcogenide monolayers". Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAY038.
Pełny tekst źródłaTransition metal dichalcogenide monolayers (TMDCs) are recently discovered two-dimensional materials. They host a strong intrinsic spin-orbit coupling (SOC), that acts as an effective Zeeman field with opposite, out-of-plane orientations in the +K and –K corners of the Brillouin zone (valleys). This SOC, and its interplay with disorder, strongly influences the behavior of quantum coherent phenomena in TMDCs. In this thesis, we investigate two such phenomena: superconductivity and interference corrections to the conductance, which include weak (anti-) localization and universal conductance fluctuations.Several superconducting TMDCs have been experimentally found in both n-doped (MoS¬2, WS2) and p-doped (NbSe2, TaS2) regimes. Here, the intrinsic SOC causes unusual “Ising pairing” of the Cooper pairs, formed of electrons from opposite valleys with strongly pinned out-of-plane spins. In-plane magnetic fields are thus not efficient in breaking the Cooper pairs by the paramagnetic effect, which results in a large enhancement of the in-plane upper critical field – the main signature of Ising superconductivity. In the first part of this work, we calculate the upper critical field as well as the density of states of disordered superconducting TMDCs. We show that intravalley scattering does not affect these properties, but that they strongly depend on intervalley scattering, which provides a depairing mechanism. In p-doped Ising superconductors, where multiple bands cross the Fermi level, we identify interband scattering as another important mechanism. We show that weak intervalley and interband scattering can explain experimental observations in n- and p-doped TMDC superconductors, respectively.In the second part of this work, we calculate the interference corrections to the conductance in the normal state of TMDCs, which can serve as an independent probe of SOC of disorder. Because of the interplay between valley structure and SOC, these materials exhibit a rich behavior of weak (anti-) localization and universal conductance fluctuations, which is qualitatively different from other two-dimensional systems such as conventional metals or graphene. Our results can also be used to describe graphene/TMDC heterostructures, where SOC is induced in the graphene sheet. We discuss parameter regimes that can be used to interpret recent experiments and assess the strength of SOC and disorder. Furthermore, we show that an in-plane Zeeman field can be used to distinguish contributions of different kinds of SOC to the weak (anti-) localization
Książki na temat "Transition metal dichalcogenide (TMD)"
Singh, Abhay Kumar. 2D Transition-Metal Dichalcogenides (TMDs): Fundamentals and Application. Singapore: Springer Nature Singapore, 2025. https://doi.org/10.1007/978-981-96-0247-6.
Pełny tekst źródłaShih, En-Min. Low-Temperature Transport Study of Transition Metal Dichalcogenide Heterostructures. [New York, N.Y.?]: [publisher not identified], 2020.
Znajdź pełny tekst źródłaKim, Suk Hyun. Probing Transition Metal Dichalcogenide Monolayers and Heterostructures by Polarization-Resolved Spectroscopy. [New York, N.Y.?]: [publisher not identified], 2018.
Znajdź pełny tekst źródłaArdelean, Jenny V. Optical Characterization of Charge Transfer Excitons in Transition Metal Dichalcogenide Heterostructures. [New York, N.Y.?]: [publisher not identified], 2019.
Znajdź pełny tekst źródłaHill, Heather Marie. Probing Transition Metal Dichalcogenide Monolayers and Heterostructures by Optical Spectroscopy and Scanning Tunneling Spectroscopy. [New York, N.Y.?]: [publisher not identified], 2016.
Znajdź pełny tekst źródłaCzęści książek na temat "Transition metal dichalcogenide (TMD)"
Wang, Tian, Ashok Kumar Kakarla i Jae Su Yu. "2D Transition Metal Dichalcogenides (TMD)-Based Nanomaterials for Lithium/Sodium-ion Batteries". W 2D Nanomaterials, 341–60. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003178453-20.
Pełny tekst źródłaJoshi, Swati, i Brajesh Kumar Kaushik. "Prospects for Electro-optic Modulator Based on 2D Transition Metal Dichalcogenides (TMD)". W Springer Proceedings in Physics, 661–64. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9259-1_152.
Pełny tekst źródłaSridevi, R., i J. Charles Pravin. "Two-Dimensional Transition Metal Dichalcogenide (TMD) Materials in Field-Effect Transistor (FET) Devices for Low Power Applications". W Semiconductor Devices and Technologies for Future Ultra Low Power Electronics, 253–88. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003200987-11.
Pełny tekst źródłaKolobov, Alexander V., i Junji Tominaga. "TMDC Heterostructures". W Two-Dimensional Transition-Metal Dichalcogenides, 447–71. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31450-1_13.
Pełny tekst źródłaKolobov, Alexander V., i Junji Tominaga. "Magnetism in 2D TMDC". W Two-Dimensional Transition-Metal Dichalcogenides, 365–88. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31450-1_10.
Pełny tekst źródłaKolobov, Alexander V., i Junji Tominaga. "Luminescence of 2D TMDC". W Two-Dimensional Transition-Metal Dichalcogenides, 295–320. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31450-1_8.
Pełny tekst źródłaKang, Kyungnam, Siwei Chen, Shichen Fu i Eui-Hyeok Yang. "Synthesis of Transition Metal Dichalcogenides (TMDs)". W Topics in Applied Physics, 155–79. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-93460-6_4.
Pełny tekst źródłaZhang, Q., C. Zheng, K. Sagoe-Crentsil i W. Duan. "Transfer and Substrate Effects on 2D Materials for Their Sensing and Energy Applications in Civil Engineering". W Lecture Notes in Civil Engineering, 409–19. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3330-3_42.
Pełny tekst źródłaTyagi, Shrestha, Kavita Sharma, Ashwani Kumar, Yogendra K. Gautam, Anil Kumar Malik i Beer Pal Singh. "Transition Metal Dichalcogenides (TMDs) Nanocomposites-Based Supercapacitors". W Materials Horizons: From Nature to Nanomaterials, 77–101. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-0553-7_3.
Pełny tekst źródłaNaz, Raheela, Tahir Rasheed, Suleman Khan i Muhammad Bilal. "Nanostructured 2D Transition Metal Dichalcogenides (TMDs) as Electrodes for Supercapacitor". W Nanostructured Materials for Supercapacitors, 319–39. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-99302-3_15.
Pełny tekst źródłaStreszczenia konferencji na temat "Transition metal dichalcogenide (TMD)"
Suárez-Forero, D. G., R. Ni, S. Sarkar, M. Jalali Mehrabad, M. Hafezi i Y. Zhou. "Chiral optical nanocavity with atomically thin mirrors". W CLEO: Fundamental Science, FF2C.2. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_fs.2024.ff2c.2.
Pełny tekst źródłaBerger, Russell, Alex Mavian, Edgar Dimitrov, Na Zhang, Nazifa Rumman, Pascal Bassène, Humberto Terrones, Peter Persans, Mauricio Terrones i Moussa N’Gom. "A Wavefront Shaping Approach to Second Harmonic Generation Enhancement in WS2". W Frontiers in Optics, FTh3E.2. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/fio.2024.fth3e.2.
Pełny tekst źródłaWang, Zhi, Li He, Bumho Kim i Bo Zhen. "Electrical Control of Cavity Exciton-Polaritons". W CLEO: Fundamental Science, FTh3L.2. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_fs.2024.fth3l.2.
Pełny tekst źródłaJain, Puneet, Shotaro Yotsuya, Kosuke Nagashio i Daisuke Kiriya. "Self-assembly of dopant molecules on MoS2 monolayer for degeneracy/heavily doping". W JSAP-Optica Joint Symposia, 18a_A35_1. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/jsapo.2024.18a_a35_1.
Pełny tekst źródłaBharti, Neetu Raj, Aditya Kushwaha i Neeraj Goel. "Pt Nanocluster Decoration on WSe2 for Enhanced NO2 Sensing: A DFT Investigation". W JSAP-Optica Joint Symposia, 18a_A35_7. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/jsapo.2024.18a_a35_7.
Pełny tekst źródłaLiu, Zhida, Haonan Wang, Li Yang i Xiaoqin Li. "New quasiparticles in semiconductor moiré superlattices". W Laser Science, LM3F.3. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/ls.2024.lm3f.3.
Pełny tekst źródłaWang, Haonan, Kenji Watanabe, Takashi Taniguchi i Kazunari Matsuda. "Identification and manipulation of valley coherence in monolayer WSe2". W JSAP-Optica Joint Symposia, 17a_A35_7. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/jsapo.2024.17a_a35_7.
Pełny tekst źródłaGao, Yanlin, i Susumu Okada. "Energetics and electronic structures of Nb-doped WSSe layers". W JSAP-Optica Joint Symposia, 18a_A35_5. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/jsapo.2024.18a_a35_5.
Pełny tekst źródłaShimazaki, Yuya. "Electronic and excitonic properties of semiconductor bilayer moiré system revealed by optical spectroscopy". W JSAP-Optica Joint Symposia, 17a_A35_4. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/jsapo.2024.17a_a35_4.
Pełny tekst źródłaBaikadi, Pranay, Raseong Kim, Peter Reyntjens, Ashish Verma Penumatcha, Maarten Van de Put i William G. Vandenberghe. "Towards Low Contact Resistance Metal Transition-Metal Dichalcogenide Contacts - A Quantum Transport Study". W 2024 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), 01–04. IEEE, 2024. http://dx.doi.org/10.1109/sispad62626.2024.10732911.
Pełny tekst źródłaRaporty organizacyjne na temat "Transition metal dichalcogenide (TMD)"
Knezevic, Irena. Tunable plasmon-enhanced second-order optical nonlinearity in transition-metal dichalcogenide nanotriangles (Final Report for SC0008712). Office of Scientific and Technical Information (OSTI), październik 2022. http://dx.doi.org/10.2172/1891198.
Pełny tekst źródła