Artykuły w czasopismach na temat „Transition L-H”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Transition L-H.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Transition L-H”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Tsui, K. H., i C. E. Navia. "Tokamak L/H mode transition". Physics of Plasmas 19, nr 1 (styczeń 2012): 012505. http://dx.doi.org/10.1063/1.3671975.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Chen, Liang, Guosheng Xu, Lingming Shao, Wei Gao, Yifeng Wang, Yanmin Duan, Shouxin Wang i in. "Comparison of dynamical features between the fast H-L and the H-I-L transition for EAST RF-heated plasmas". Physica Scripta 97, nr 1 (1.01.2022): 015601. http://dx.doi.org/10.1088/1402-4896/ac4635.

Pełny tekst źródła
Streszczenie:
Abstract In this paper, a comparison of dynamical features between the fast H-L and the H-I-L transition, which can be identified by the intermediate phase, or ‘I-phase’, has been made for radio-frequency (RF) heated deuterium plasmas in EAST. The fast H-L transition is characterized by a rapid release of stored energy during the transition transient, while the H-I-L transition exhibits a ‘soft’ H-mode termination. One important distinction between the transitions has been observed by dedicated probe measurements slightly inside the separatrix, with respect to the radial gradient of the floating potential, which corresponds to the E × B flow and/or the electron temperature gradient. The potential gradient inside the separatrix oscillates and persists during the stationary I-phase, and shows a larger amplitude than that before the fast H-L transition. The reduction of the gradient leads to the final transition to the L-mode for both the fast H-L and the H-I-L transition. These findings indicate that the mean E × B flow shear and/or edge electron temperature gradient play a critical role underlying the H-L transition physics. In addition, the back transition in EAST is found to be sensitive to magnetic configuration, where the vertical configuration, i.e., inner strike-point located at vertical target, favours access to the H-I-L transition, while the horizontal shape facilitates achievement of the fast H-L transition. The divertor recycling level normalized to electron density is higher before the fast H-L transition, as compared to that before the I-phase, which strongly suggest that the density of the recycled neutrals is an important ingredient in determining the back transition behaviour.
Style APA, Harvard, Vancouver, ISO itp.
3

Toda, Shinichiro, Sanae-I. Itoh, Masatoshi Yagi, Kimitaka Itoh i Atsushi Fukuyama. "Probabilistic Nature in L/H Transition". Journal of the Physical Society of Japan 68, nr 11 (15.11.1999): 3520–27. http://dx.doi.org/10.1143/jpsj.68.3520.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Rozhansky, V., M. Tendler i S. Voskoboinikov. "Dynamics of the L - H transition". Plasma Physics and Controlled Fusion 38, nr 8 (1.08.1996): 1327–30. http://dx.doi.org/10.1088/0741-3335/38/8/031.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Shaing, K. C., C. T. Hsu i P. J. Christenson. "L-H transition in tokamaks and stellarators". Plasma Physics and Controlled Fusion 36, nr 7A (1.07.1994): A75—A80. http://dx.doi.org/10.1088/0741-3335/36/7a/007.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Fukuda, T. "`Hidden' variables affecting the L-H transition". Plasma Physics and Controlled Fusion 40, nr 5 (1.05.1998): 543–55. http://dx.doi.org/10.1088/0741-3335/40/5/003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Estrada, T., E. Ascasíbar, T. Happel, C. Hidalgo, E. Blanco, R. Jiménez-Gómez, M. Liniers, D. López-Bruna, F. L. Tabarés i D. Tafalla. "L-H Transition Experiments in TJ-II". Contributions to Plasma Physics 50, nr 6-7 (23.07.2010): 501–6. http://dx.doi.org/10.1002/ctpp.200900024.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Schorlepp, Timo, Pavel Sasorov i Baruch Meerson. "Short-time large deviations of the spatially averaged height of a Kardar–Parisi–Zhang interface on a ring". Journal of Statistical Mechanics: Theory and Experiment 2023, nr 12 (1.12.2023): 123202. http://dx.doi.org/10.1088/1742-5468/ad0a94.

Pełny tekst źródła
Streszczenie:
Abstract Using the optimal fluctuation method, we evaluate the short-time probability distribution P ( H ˉ , L , t = T ) of the spatially averaged height H ˉ = ( 1 / L ) ∫ 0 L h ( x , t = T ) d x of a one-dimensional interface h ( x , t ) governed by the Kardar–Parisi–Zhang equation ∂ t h = ν ∂ x 2 h + λ 2 ∂ x h 2 + D ξ x , t on a ring of length L. The process starts from a flat interface, h ( x , t = 0 ) = 0 . Both at λ H ˉ < 0 and at sufficiently small positive λ H ˉ the optimal (that is, the least-action) path h ( x , t ) of the interface, conditioned on H ˉ , is uniform in space, and the distribution P ( H ˉ , L , T ) is Gaussian. However, at sufficiently large λ H ˉ > 0 the spatially uniform solution becomes sub-optimal and gives way to non-uniform optimal paths. We study these, and the resulting non-Gaussian distribution P ( H ˉ , L , T ) , analytically and numerically. The loss of optimality of the uniform solution occurs via a dynamical phase transition of either first or second order, depending on the rescaled system size ℓ = L / ν T , at a critical value H ˉ = H ˉ c ( ℓ ) . At large but finite ℓ the transition is of first order. Remarkably, it becomes an ‘accidental’ second-order transition in the limit of ℓ → ∞ , where a large-deviation behavior − ln P ( H ¯ , L , T ) ≃ ( L / T ) f ( H ¯ ) (in the units λ = ν = D = 1 ) is observed. At small ℓ the transition is of second order, while at ℓ = O ( 1 ) transitions of both types occur.
Style APA, Harvard, Vancouver, ISO itp.
9

Shaing, K. C., i P. J. Christenson. "Ion collisionality and L–H transition in tokamaks". Physics of Fluids B: Plasma Physics 5, nr 3 (marzec 1993): 666–68. http://dx.doi.org/10.1063/1.860511.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Meyer, H., M. F. M. De Bock, N. J. Conway, S. J. Freethy, K. Gibson, J. Hiratsuka, A. Kirk i in. "L–H transition and pedestal studies on MAST". Nuclear Fusion 51, nr 11 (24.10.2011): 113011. http://dx.doi.org/10.1088/0029-5515/51/11/113011.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Berionni, V., P. Morel i Ö. D. Gürcan. "Multi-shell transport model for L-H transition". Physics of Plasmas 24, nr 12 (grudzień 2017): 122310. http://dx.doi.org/10.1063/1.4998569.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

XU, Guosheng, i Xingquan WU. "Understanding L–H transition in tokamak fusion plasmas". Plasma Science and Technology 19, nr 3 (21.02.2017): 033001. http://dx.doi.org/10.1088/2058-6272/19/3/033001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Fuji, Y., K. Itoh, A. Fukuyama i S. I. Itoh. "Transport Modeling of L/H Transition in Tokamaks". Fusion Technology 27, nr 3T (kwiecień 1995): 485–88. http://dx.doi.org/10.13182/fst95-a11947134.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Itoh, S.-I., K. Itoh i S. Toda. "Statistical theory of L H transition in tokamaks*". Plasma Physics and Controlled Fusion 45, nr 5 (25.04.2003): 823–40. http://dx.doi.org/10.1088/0741-3335/45/5/322.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Rogers, B. N., J. F. Drake i A. Zeiler. "Tokamak edge turbulence and the L-H transition". Czechoslovak Journal of Physics 48, S2 (luty 1998): 50. http://dx.doi.org/10.1007/s10582-998-0020-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Tavallaei, Narguess, Mohammad Ramezanpour i Behrooz Olfatian Gillan. "Structural transition between $L^{p}(G)$ and $L^{p}(G/H)$". Banach Journal of Mathematical Analysis 9, nr 3 (2015): 194–205. http://dx.doi.org/10.15352/bjma/09-3-14.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Moyer, R. A., T. L. Rhodes, C. L. Rettig, E. J. Doyle, K. H. Burrell, J. Cuthbertson, R. J. Groebner i in. "Study of the phase transition dynamics of the L to H transition". Plasma Physics and Controlled Fusion 41, nr 2 (1.01.1999): 243–49. http://dx.doi.org/10.1088/0741-3335/41/2/007.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Hughes, J. W., A. E. Hubbard, D. A. Mossessian, B. LaBombard, T. M. Biewer, R. S. Granetz, M. Greenwald i in. "H-Mode Pedestal and L-H Transition Studies on Alcator C-Mod". Fusion Science and Technology 51, nr 3 (kwiecień 2007): 317–41. http://dx.doi.org/10.13182/fst07-a1425.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Miki, K., P. H. Diamond, Ö. D. Gürcan, G. R. Tynan, T. Estrada, L. Schmitz i G. S. Xu. "Spatio-temporal evolution of the L → I → H transition". Physics of Plasmas 19, nr 9 (wrzesień 2012): 092306. http://dx.doi.org/10.1063/1.4753931.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Stoltzfus-Dueck, T. "Parallel electron force balance and the L-H transition". Physics of Plasmas 23, nr 5 (maj 2016): 054505. http://dx.doi.org/10.1063/1.4951015.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Carlstrom, T. N., K. H. Burrell, R. J. Groebner, A. W. Leonard, T. H. Osborne i D. M. Thomas. "Comparison of L-H transition measurements with physics models". Nuclear Fusion 39, nr 11Y (listopad 1999): 1941–47. http://dx.doi.org/10.1088/0029-5515/39/11y/338.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Bourdelle, C., C. F. Maggi, L. Chôné, P. Beyer, J. Citrin, N. Fedorczak, X. Garbet i in. "L to H mode transition: on the role ofZeff". Nuclear Fusion 54, nr 2 (21.01.2014): 022001. http://dx.doi.org/10.1088/0029-5515/54/2/022001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Miki, K., P. H. Diamond, L. Schmitz, D. C. McDonald, T. Estrada, Ö. D. Gürcan i G. R. Tynan. "Spatio-temporal evolution of the H → L back transition". Physics of Plasmas 20, nr 6 (czerwiec 2013): 062304. http://dx.doi.org/10.1063/1.4812555.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Janeschitz, G., G. W. Pacher, Yu Igitkhanov, H. D. Pacher, S. D. Pinches, O. Pogutse i M. Sugihara. "L–H transition in tokamak plasmas: 1.5-D simulations". Journal of Nuclear Materials 266-269 (marzec 1999): 843–49. http://dx.doi.org/10.1016/s0022-3115(98)00615-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Bourdelle, C. "Staged approach towards physics-based L-H transition models". Nuclear Fusion 60, nr 10 (8.09.2020): 102002. http://dx.doi.org/10.1088/1741-4326/ab9e15.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Fukuyama, A., Y. Fuji, S.-I. Itoh, M. Yagi i K. Itoh. "Transport modelling of L - H transition and barrier formation". Plasma Physics and Controlled Fusion 38, nr 8 (1.08.1996): 1319–22. http://dx.doi.org/10.1088/0741-3335/38/8/029.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Toda, S., S.-I. Itoh, M. Yagi, A. Fukuyama i K. Itoh. "Double hysteresis in L/H transition and compound dithers". Plasma Physics and Controlled Fusion 38, nr 8 (1.08.1996): 1337–41. http://dx.doi.org/10.1088/0741-3335/38/8/033.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Connor, J. W., i H. R. Wilson. "A review of theories of the L-H transition". Plasma Physics and Controlled Fusion 42, nr 1 (23.12.1999): R1—R74. http://dx.doi.org/10.1088/0741-3335/42/1/201.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Itoh, Sanae-Inoue, i Kimitaka Itoh. "Change of Transport at L- and H-Mode Transition". Journal of the Physical Society of Japan 59, nr 11 (15.11.1990): 3815–18. http://dx.doi.org/10.1143/jpsj.59.3815.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Hirsch, M. "Overview of L-H Transition Experiments in Helical Devices". Contributions to Plasma Physics 50, nr 6-7 (23.07.2010): 487–92. http://dx.doi.org/10.1002/ctpp.200900029.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Kim, Eun-Jin, i Abhiram Anand Thiruthummal. "Stochastic Dynamics of Fusion Low-to-High Confinement Mode (L-H) Transition: Correlation and Causal Analyses Using Information Geometry". Entropy 26, nr 1 (22.12.2023): 17. http://dx.doi.org/10.3390/e26010017.

Pełny tekst źródła
Streszczenie:
We investigate the stochastic dynamics of the prey–predator model of the Low-to-High confinement mode (L-H) transition in magnetically confined fusion plasmas. By considering stochastic noise in the turbulence and zonal flows as well as constant and time-varying input power Q, we perform multiple stochastic simulations of over a million trajectories using GPU computing. Due to stochastic noise, some trajectories undergo the L-H transition while others do not, leading to a mixture of H-mode and dithering at a given time and/or input power. One of the consequences of this is that H-mode characteristics appear at a smaller input power Q<Qc (where Qc is the critical value for the L-H transition in the deterministic system) as a secondary peak of a probability density function (PDF) while dithering characteristics persists beyond the power threshold for Q>Qc as a second peak. The coexisting H-mode and dithering near Q=Qc leads to a prominent bimodal PDF with a gradual L-H transition rather than a sudden transition at Q=Qc and uncertainty in the input power. Also, a time-dependent input power leads to increased variability (dispersion) in stochastic trajectories and a more prominent bimodal PDF. We provide an interpretation of the results using information geometry to elucidate self-regulation between zonal flows, turbulence, and information causality rate to unravel causal relations involved in the L-H transition.
Style APA, Harvard, Vancouver, ISO itp.
32

WU, Xingquan, Guosheng XU, Baonian WAN, Jens Juul RASMUSSEN, Volker NAULIN, Anders Henry NIELSEN, Liang CHEN, Ran CHEN, Ning YAN i Linming SHAO. "A new model of the L–H transition and H-mode power threshold". Plasma Science and Technology 20, nr 9 (6.07.2018): 094003. http://dx.doi.org/10.1088/2058-6272/aabb9e.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Liu, Peng, Guosheng Xu, Huiqian Wang, Min Jiang, Liang Wang, Wei Zhang, Shaocheng Liu, Ning Yan i Siye Ding. "Reciprocating Probe Measurements of L-H Transition in LHCD H-Mode on EAST". Plasma Science and Technology 15, nr 7 (lipiec 2013): 619–22. http://dx.doi.org/10.1088/1009-0630/15/7/03.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Zweben, S. J., A. Diallo, M. Lampert, T. Stoltzfus-Dueck i S. Banerjee. "Edge turbulence velocity preceding the L-H transition in NSTX". Physics of Plasmas 28, nr 3 (marzec 2021): 032304. http://dx.doi.org/10.1063/5.0039153.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Solano, E. R., G. Birkenmeier, E. Delabie, C. Silva, J. C. Hillesheim, A. Boboc, I. S. Carvalho i in. "L–H transition threshold studies in helium plasmas at JET". Nuclear Fusion 61, nr 12 (22.10.2021): 124001. http://dx.doi.org/10.1088/1741-4326/ac2b76.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Shao, L. M., G. S. Xu, R. Chen, L. Chen, G. Birkenmeier, Y. M. Duan, W. Gao i in. "Small amplitude oscillations before the L-H transition in EAST". Plasma Physics and Controlled Fusion 60, nr 3 (5.02.2018): 035012. http://dx.doi.org/10.1088/1361-6587/aaa57a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Toi, K., F. Watanabe, S. Ohdachi, S. Morita, X. Gao, K. Narihara, S. Sakakibara i in. "L-H Transition and Edge Transport Barrier Formation on LHD". Fusion Science and Technology 58, nr 1 (sierpień 2010): 61–69. http://dx.doi.org/10.13182/fst10-a10794.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Strauss, H. R. "Drift stabilization of tearing modes and the L–H transition". Physics of Fluids B: Plasma Physics 4, nr 4 (kwiecień 1992): 934–37. http://dx.doi.org/10.1063/1.860109.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Wang, Zhongtian, i G. Le Clair. "A model for the L-H mode transition in Tokamaks". Nuclear Fusion 32, nr 11 (listopad 1992): 2036–39. http://dx.doi.org/10.1088/0029-5515/32/11/i16.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Cordey, J. G., D. G. Muir, V. V. Parail, G. Vayakis, S. Ali-Arshad, D. V. Bartlett, D. J. Campbell i in. "Evolution of transport through the L-H transition in JET". Nuclear Fusion 35, nr 5 (maj 1995): 505–20. http://dx.doi.org/10.1088/0029-5515/35/5/i02.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Fundamenski, W., F. Militello, D. Moulton i D. C. McDonald. "A new model of the L–H transition in tokamaks". Nuclear Fusion 52, nr 6 (24.04.2012): 062003. http://dx.doi.org/10.1088/0029-5515/52/6/062003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Xu, G. S., H. Q. Wang, M. Xu, B. N. Wan, H. Y. Guo, P. H. Diamond, G. R. Tynan i in. "Dynamics of L–H transition and I-phase in EAST". Nuclear Fusion 54, nr 10 (16.09.2014): 103002. http://dx.doi.org/10.1088/0029-5515/54/10/103002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Andrew, Y., N. C. Hawkes, M. G. O'Mullane, R. Sartori, M. N. A. Beurskens, I. Coffey, E. Joffrin i in. "Edge ion parameters at the L–H transition on JET". Plasma Physics and Controlled Fusion 46, nr 2 (23.12.2003): 337–47. http://dx.doi.org/10.1088/0741-3335/46/2/002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Gervasini, G., E. Lazzaro i E. Minardi. "Neoclassical transport and poloidal rotation at the L-H transition". Physica Scripta 52, nr 4 (1.10.1995): 417–20. http://dx.doi.org/10.1088/0031-8949/52/4/012.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

KUIROUKIDIS, Ap, i G. N. THROUMOULOPOULOS. "Nonlinear translational symmetric equilibria relevant to the L–H transition". Journal of Plasma Physics 79, nr 3 (12.11.2012): 257–65. http://dx.doi.org/10.1017/s0022377812000918.

Pełny tekst źródła
Streszczenie:
AbstractNonlinear z-independent solutions to a generalized Grad–Shafranov equation (GSE) with up to quartic flux terms in the free functions and incompressible plasma flow non-parallel to the magnetic field are constructed quasi-analytically. Through an ansatz, the GSE is transformed to a set of three ordinary differential equations and a constraint for three functions of the coordinate x, in Cartesian coordinates (x,y), which then are solved numerically. Equilibrium configurations for certain values of the integration constants are displayed. Examination of their characteristics in connection with the impact of nonlinearity and sheared flow indicates that these equilibria are consistent with the L–H transition phenomenology. For flows parallel to the magnetic field, one equilibrium corresponding to the H state is potentially stable in the sense that a sufficient condition for linear stability is satisfied in an appreciable part of the plasma while another solution corresponding to the L state does not satisfy the condition. The results indicate that the sheared flow in conjunction with the equilibrium nonlinearity plays a stabilizing role.
Style APA, Harvard, Vancouver, ISO itp.
46

Moyer, R. A., R. D. Lehmer, T. E. Evans, R. W. Conn i L. Schmitz. "Nonlinear analysis of turbulence across the L to H transition". Plasma Physics and Controlled Fusion 38, nr 8 (1.08.1996): 1273–78. http://dx.doi.org/10.1088/0741-3335/38/8/021.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Scott, B. "Warm-ion drift Alfvén turbulence and the L-H transition". Plasma Physics and Controlled Fusion 40, nr 5 (1.05.1998): 823–26. http://dx.doi.org/10.1088/0741-3335/40/5/050.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Kiviniemi, T. P., J. A. Heikkinen, A. G. Peeters, T. Kurki-Suonio i S. K. Sipilä. "Critical assessment of ion loss mechanisms for L-H transition". Plasma Physics and Controlled Fusion 42, nr 5A (1.05.2000): A185—A190. http://dx.doi.org/10.1088/0741-3335/42/5a/320.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Askinazi, L. G., A. A. Belokurov, V. V. Bulanin, A. D. Gurchenko, E. Z. Gusakov, T. P. Kiviniemi, S. V. Lebedev i in. "Physics of GAM-initiated L–H transition in a tokamak". Plasma Physics and Controlled Fusion 59, nr 1 (2.11.2016): 014037. http://dx.doi.org/10.1088/0741-3335/59/1/014037.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

González, S., J. Vega, A. Murari, A. Pereira, S. Dormido-Canto i J. M. Ramírez. "H/L transition time estimation in JET using conformal predictors". Fusion Engineering and Design 87, nr 12 (grudzień 2012): 2084–86. http://dx.doi.org/10.1016/j.fusengdes.2012.02.126.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii