Gotowa bibliografia na temat „Transistor scaling”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Transistor scaling”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Transistor scaling"
Ahmed Mohammede, Arsen, Zaidoon Khalaf Mahmood i Hüseyin Demirel. "Study of finfet transistor: critical and literature review in finfet transistor in the active filter". 3C TIC: Cuadernos de desarrollo aplicados a las TIC 12, nr 1 (31.03.2023): 65–81. http://dx.doi.org/10.17993/3ctic.2023.121.65-81.
Pełny tekst źródłaDatta, Suman, Wriddhi Chakraborty i Marko Radosavljevic. "Toward attojoule switching energy in logic transistors". Science 378, nr 6621 (18.11.2022): 733–40. http://dx.doi.org/10.1126/science.ade7656.
Pełny tekst źródłaSARKOZY, S., X. MEI, W. YOSHIDA, P. H. LIU, M. LANGE, J. LEE, Z. ZHOU i in. "AMPLIFIER GAIN PER STAGE UP TO 0.5 THz USING 35 NM InP HEMT TRANSISTORS". International Journal of High Speed Electronics and Systems 20, nr 03 (wrzesień 2011): 399–404. http://dx.doi.org/10.1142/s0129156411006684.
Pełny tekst źródłaReid, Dave, Campbell Millar, Scott Roy, Gareth Roy, Richard Sinnott, Gordon Stewart, Graeme Stewart i Asen Asenov. "Enabling cutting-edge semiconductor simulation through grid technology". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 367, nr 1897 (28.06.2009): 2573–84. http://dx.doi.org/10.1098/rsta.2009.0031.
Pełny tekst źródłaFazio, Al. "Flash Memory Scaling". MRS Bulletin 29, nr 11 (listopad 2004): 814–17. http://dx.doi.org/10.1557/mrs2004.233.
Pełny tekst źródłaAngelov, George V., Dimitar N. Nikolov i Marin H. Hristov. "Technology and Modeling of Nonclassical Transistor Devices". Journal of Electrical and Computer Engineering 2019 (3.11.2019): 1–18. http://dx.doi.org/10.1155/2019/4792461.
Pełny tekst źródłaIeong, Meikei, Vijay Narayanan, Dinkar Singh, Anna Topol, Victor Chan i Zhibin Ren. "Transistor scaling with novel materials". Materials Today 9, nr 6 (czerwiec 2006): 26–31. http://dx.doi.org/10.1016/s1369-7021(06)71540-1.
Pełny tekst źródłaCastañer, Luis M., Ramon Alcubilla i Anna Benavent. "Bipolar transistor vertical scaling framework". Solid-State Electronics 38, nr 7 (lipiec 1995): 1367–71. http://dx.doi.org/10.1016/0038-1101(94)00254-d.
Pełny tekst źródłaJacob, Ajey P., Ruilong Xie, Min Gyu Sung, Lars Liebmann, Rinus T. P. Lee i Bill Taylor. "Scaling Challenges for Advanced CMOS Devices". International Journal of High Speed Electronics and Systems 26, nr 01n02 (17.02.2017): 1740001. http://dx.doi.org/10.1142/s0129156417400018.
Pełny tekst źródłaChen, Zhuo, Huilong Zhu, Guilei Wang, Qi Wang, Zhongrui Xiao, Yongkui Zhang, Jinbiao Liu i in. "High-Quality Recrystallization of Amorphous Silicon on Si (100) Induced via Laser Annealing at the Nanoscale". Nanomaterials 13, nr 12 (15.06.2023): 1867. http://dx.doi.org/10.3390/nano13121867.
Pełny tekst źródłaRozprawy doktorskie na temat "Transistor scaling"
Chen, Qiang. "Scaling limits and opportunities of double-gate MOSFETS". Diss., Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/15011.
Pełny tekst źródłaDeshpande, Veeresh. "Scaling Beyond Moore: Single Electron Transistor and Single Atom Transistor Integration on CMOS". Phd thesis, Université de Grenoble, 2012. http://tel.archives-ouvertes.fr/tel-00813508.
Pełny tekst źródłaWoo, Raymond. "Band-to-band tunneling transistor scaling and design for low-power logic applications /". May be available electronically:, 2009. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.
Pełny tekst źródłaYuan, Jiahui. "Cryogenic operation of silicon-germanium heterojunction bipolar transistors and its relation to scaling and optimization". Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/33837.
Pełny tekst źródłaSchuette, Michael L. "Advanced processing for scaled depletion and enhancement-mode AlGaN/GaN HEMTs". The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1275524410.
Pełny tekst źródłaAhmed, Adnan. "Study of Low-Temperature Effects in Silicon-Germanium Heterojunction Bipolar Transistor Technology". Thesis, Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/7227.
Pełny tekst źródłaConnor, Mark Anthony. "Design of Power-Scalable Gallium Nitride Class E Power Amplifiers". University of Dayton / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1405437893.
Pełny tekst źródłaNicoletti, Talitha. "Estudo de transistores UTBOX SOI não auto-alinhados como célula de memória". Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/3/3140/tde-10072014-012728/.
Pełny tekst źródłaThe main topic of this work is the study of extensionless UTBOX SOI transistors, also called underlapped devices, applied as a single transistor floating body RAM (1T-FBRAM single transistor floating body access memory). The electrical characterization of the devices was performed through static and dynamic experimental data and two dimensional simulations were implemented to confirm the obtained results. In the literature, different methods to write and read the data 1 can be found but in order to improve the dynamic parameters of the memories, as retention time and sense margin and still allows the scaling of fully depleted devices, the BJT (Bipolar Junction Transistor) method is used in this work. One of the biggest issues to meet the specifications for future generations of 1T-DRAM cells is the retention time that scales together with the channel length. In order to overcome this issue or at least slow it down, in this work, we present for the first time, a study about the retention time and sense margin dependence of the channel length where it was possible to observe that these dynamic parameters can be optimized through the back gate bias and kept constant for channel lengths higher than 50 nm for extensionless devices and 80 nm for standard ones. However, it was also observed that there is a minimal channel length which depends of the source/drain junctions, i.e. 30 nm for extensionless and 50 nm for standard devices in the sense that for shorter channel lengths than these ones, there is no room for optimization degrading the performance of the memory cell. The mechanism behind the dynamic parameters degradation was identified and attributed to the GIDL current amplification by the lateral bipolar transistor with narrow base. Simulations confirmed this effect where higher generation rates near the junctions were presented only when the band-toband- tunneling adjustment was considered (bbt.kane model). Comparing the performance of standard and extensionless devices in both digital and analog electrical parameters and also in memory applications, it was found that extensionless devices present better performance since they reach faster switching which means lower subthreshold slope; less influence of the electrical field in the channel charges; less variation of the threshold voltage even increasing the temperature. Furthermore, it was seen that the gate length can be further scaled using underlap junctions since these devices are less susceptible to the GIDL current, presenting less electric field and generation rate near the source/drain junctions and reach a retention time of around 4 ms and sense margin of 71A/m. According to the International Technology Roadmap for Semiconductor of 2011, the retention time for the existing DRAM is around 64 ms. In order to increase the retention time of the 1T-DRAMs to values close to 64 ms it is recommended the use of extensionless devices and also the substitution of silicon by materials with higher band gap, i.e., gallium arsenide and siliconcarbon, which makes difficult the electron tunneling therefore, decreasing the GIDL.
Murali, Raghunath. "Scaling opportunities for bulk accumulation and inversion MOSFETs for gigascale integration". Diss., Available online, Georgia Institute of Technology, 2004:, 2004. http://etd.gatech.edu/theses/submitted/etd-02132004-173432/unrestricted/murali%5FRaghunath%5F405%5F.pdf.
Pełny tekst źródłaHess, Dennis, Committee Member; Meindl, James, Committee Chair; Allen, Phillip, Committee Member; Cressler, John, Committee Member; Davis, Jeffrey, Committee Member. Vita. Includes bibliographical references (leaves 108-119).
Hoppe, Arne [Verfasser]. "Scaling limits and Megahertz operation in thiophene-based field effect transistors / Arne Hoppe". Bremen : IRC-Library, Information Resource Center der Jacobs University Bremen, 2008. http://d-nb.info/1034966928/34.
Pełny tekst źródłaKsiążki na temat "Transistor scaling"
F, Eastman Lester, Society of Photo-optical Instrumentation Engineers., Society of Vacuum Coaters i SPIE Symposium on Advances in Semiconductors and Superconductors: Physics Toward Device Applications (1990 : San Diego, Calif.), red. High-speed electronics and device scaling: 18-19 March 1990, San Diego, California. Bellingham, Wash., USA: SPIE, 1990.
Znajdź pełny tekst źródłaThompson, Scott, Faran Nouri, Wen-Chin Lee i Wilman Tsai. Transistor Scaling : Volume 913: Methods, Materials and Modeling. University of Cambridge ESOL Examinations, 2014.
Znajdź pełny tekst źródłaTransistor Scaling: Methods, Materials and Modeling: Symposium Held April 18-19, 2006, San Francisco, California, U.S.A. (Materials Research Society Symposium Proceedings). Materials Research Society, 2006.
Znajdź pełny tekst źródłaAshraf, Nabil Shovon, Shawon Alam i Mohaiminul Alam. New Prospects of Integrating Low Substrate Temperatures with Scaling-Sustained Device Architectural Innovation. Springer International Publishing AG, 2016.
Znajdź pełny tekst źródłaAshraf, Nabil Shovon, Shawon Alam i Mohaiminul Alam. New Prospects of Integrating Low Substrate Temperatures with Scaling-Sustained Device Architectural Innovation. Morgan & Claypool Publishers, 2016.
Znajdź pełny tekst źródłaAshraf, Nabil Shovon, Shawon Alam i Mohaiminul Alam. New Prospects of Integrating Low Substrate Temperatures with Scaling-Sustained Device Architectural Innovation. Morgan & Claypool Publishers, 2016.
Znajdź pełny tekst źródłaCzęści książek na temat "Transistor scaling"
Julien, Levisse Alexandre Sébastien, Xifan Tang i Pierre-Emmanuel Gaillardon. "Innovative Memory Architectures Using Functionality Enhanced Devices". W Emerging Computing: From Devices to Systems, 47–83. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7487-7_3.
Pełny tekst źródłaChaudhry, Amit. "Scaling of a MOS Transistor". W Fundamentals of Nanoscaled Field Effect Transistors, 1–24. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6822-6_1.
Pełny tekst źródłaLiu, T. J. K., i L. Chang. "Transistor Scaling to the Limit". W Into the Nano Era, 191–223. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-74559-4_8.
Pełny tekst źródłaSkotnicki, T., i F. Boeuf. "Optimal Scaling Methodologies and Transistor Performance". W High Dielectric Constant Materials, 143–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-540-26462-0_6.
Pełny tekst źródłaTigelaar, Howard. "The Incredible Shrinking IC: Part 2 FEOL Isolation Scaling and Transistor Scaling". W How Transistor Area Shrank by 1 Million Fold, 201–26. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-40021-7_10.
Pełny tekst źródłaAmiri, Iraj Sadegh, i Mahdiar Ghadiry. "Introduction on Scaling Issues of Conventional Semiconductors". W Analytical Modelling of Breakdown Effect in Graphene Nanoribbon Field Effect Transistor, 1–7. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6550-7_1.
Pełny tekst źródłaJ.M. Veendrick, Harry. "Geometrical-, Physical- and Field-Scaling Impact on MOS Transistor Behaviour". W Nanometer CMOS ICs, 45–72. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-47597-4_2.
Pełny tekst źródłaVeendrick, H. J. M. "Geometrical-, physical- and field-scaling impact on MOS transistor behaviour". W Nanometer CMOS ICs, 57–91. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-8333-4_2.
Pełny tekst źródłaPrasher, Rakesh, Devi Dass i Rakesh Vaid. "Novel Attributes in Scaling Issues of an InSb-Nanowire Field-Effect Transistor". W Physics of Semiconductor Devices, 677–79. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03002-9_174.
Pełny tekst źródłaNi, Haiyan, Xiaolei Sheng i Jianping Hu. "Voltage Scaling for Adiabatic Register File Based on Complementary Pass-Transistor Adiabatic Logic". W Lecture Notes in Electrical Engineering, 39–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19706-2_6.
Pełny tekst źródłaStreszczenia konferencji na temat "Transistor scaling"
Yang, Fu-Liang, Hou-Yu Chen i Chang-Yun Chang. "SOI Transistor/Power Scaling and Scaling-Strengthened Strain". W 2004 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2004. http://dx.doi.org/10.7567/ssdm.2004.c-7-1.
Pełny tekst źródłaChen, Tianbing, Tzung-Yin Lee, Justin Allum i Mike McPartlin. "The thermal scaling: From transistor to array". W 2014 IEEE Radio Frequency Integrated Circuits Symposium (RFIC). IEEE, 2014. http://dx.doi.org/10.1109/rfic.2014.6851675.
Pełny tekst źródłaTadayon, Saied, Bijan Tadayon i Lester F. Eastman. "Effect of InAlAs emitter on the microwave performance of InAlAs/InGaAs abrupt npn heterojunction bipolar transistor". W High-Speed Electronics and Device Scaling, redaktor Lester F. Eastman. SPIE, 1990. http://dx.doi.org/10.1117/12.20909.
Pełny tekst źródłaKim, Michael E. "GaAs heterojunction bipolar transistor device and IC technology for high-performance analog/microwave, digital, and A/D conversion applications". W High-Speed Electronics and Device Scaling, redaktor Lester F. Eastman. SPIE, 1990. http://dx.doi.org/10.1117/12.20903.
Pełny tekst źródłaVan Der Bent, G., A. P. De Hek i F. E. Van Vliet. "EM - Based GaN Transistor Small-Signal Model Scaling". W 2018 13th European Microwave Integrated Circuits Conference (EuMIC). IEEE, 2018. http://dx.doi.org/10.23919/eumic.2018.8539925.
Pełny tekst źródłaKuhn, Kelin J. "CMOS transistor scaling past 32nm and implications on variation". W 2010 21st Annual IEEE/SEMI Advanced Semiconductor Manufacturing Conference (ASMC). IEEE, 2010. http://dx.doi.org/10.1109/asmc.2010.5551461.
Pełny tekst źródłaWoo, Raymond, H. Y. Serene Koh, Caner Onal, P. B. Griffin i James D. Plummer. "BTBT Transistor Scaling: Can they be Competitive with MOSFETs?" W 2008 66th Annual Device Research Conference (DRC). IEEE, 2008. http://dx.doi.org/10.1109/drc.2008.4800741.
Pełny tekst źródłaTian, H., Asanga H. Perera, D. O'Meara, H. De, C. K. Subramanian, P. Rehmann, James D. Hayden i Norm Herr. "Silicon bipolar transistor scaling for advanced BiCMOS SRAM applications". W Microelectronic Manufacturing, redaktorzy Mark Rodder, Toshiaki Tsuchiya, David Burnett i Dirk Wristers. SPIE, 1997. http://dx.doi.org/10.1117/12.284616.
Pełny tekst źródłaCao, Q. "Carbon Nanotube Transistor Technology for Scaling Beyond Si CMOS". W 2016 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2016. http://dx.doi.org/10.7567/ssdm.2016.j-3-01.
Pełny tekst źródłaShakil, S. M., i Muhammad Sana Ullah. "Analysis of HCD Effects for NMOS Transistor with Technology Scaling". W SoutheastCon 2023. IEEE, 2023. http://dx.doi.org/10.1109/southeastcon51012.2023.10115193.
Pełny tekst źródła