Artykuły w czasopismach na temat „Transhumeral prosthesis control”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 46 najlepszych artykułów w czasopismach naukowych na temat „Transhumeral prosthesis control”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Tereshenko, Vlad, Riccardo Giorgino, Kyle R. Eberlin, Ian L. Valerio, Jason M. Souza, Mario Alessandri-Bonetti, Giuseppe M. Peretti i Oskar C. Aszmann. "Emerging Value of Osseointegration for Intuitive Prosthetic Control after Transhumeral Amputations: A Systematic Review". Plastic and Reconstructive Surgery - Global Open 12, nr 5 (maj 2024): e5850. http://dx.doi.org/10.1097/gox.0000000000005850.
Pełny tekst źródłade Backer-Bes, Femke, Maaike Lange, Michael Brouwers i Iris van Wijk. "De Hoogstraat Xperience Prosthesis Transhumeral: An Innovative Test Prosthesis". JPO Journal of Prosthetics and Orthotics 36, nr 3 (lipiec 2024): 193–97. http://dx.doi.org/10.1097/jpo.0000000000000510.
Pełny tekst źródłaSattar, Neelum Yousaf, Zareena Kausar, Syed Ali Usama, Umer Farooq, Muhammad Faizan Shah, Shaheer Muhammad, Razaullah Khan i Mohamed Badran. "fNIRS-Based Upper Limb Motion Intention Recognition Using an Artificial Neural Network for Transhumeral Amputees". Sensors 22, nr 3 (18.01.2022): 726. http://dx.doi.org/10.3390/s22030726.
Pełny tekst źródłaMolina Arias, Ludwin, Marek Iwaniec, Paulina Pirowska, Magdalena Smoleń i Piotr Augustyniak. "Head and Voice-Controlled Human-Machine Interface System for Transhumeral Prosthesis". Electronics 12, nr 23 (24.11.2023): 4770. http://dx.doi.org/10.3390/electronics12234770.
Pełny tekst źródłaAlshammary, Nasser A., Daniel A. Bennett i Michael Goldfarb. "Synergistic Elbow Control for a Myoelectric Transhumeral Prosthesis". IEEE Transactions on Neural Systems and Rehabilitation Engineering 26, nr 2 (luty 2018): 468–76. http://dx.doi.org/10.1109/tnsre.2017.2781719.
Pełny tekst źródłaAhmed, Muhammad Hannan, Jiazheng Chai, Shingo Shimoda i Mitsuhiro Hayashibe. "Synergy-Space Recurrent Neural Network for Transferable Forearm Motion Prediction from Residual Limb Motion". Sensors 23, nr 9 (22.04.2023): 4188. http://dx.doi.org/10.3390/s23094188.
Pełny tekst źródłaOʼShaughnessy, Kristina D., Gregory A. Dumanian, Robert D. Lipschutz, Laura A. Miller, Kathy Stubblefield i Todd A. Kuiken. "Targeted Reinnervation to Improve Prosthesis Control in Transhumeral Amputees". Journal of Bone & Joint Surgery 90, nr 2 (luty 2008): 393–400. http://dx.doi.org/10.2106/jbjs.g.00268.
Pełny tekst źródłaNsugbe, Ejay, Oluwarotimi Williams Samuel, Mojisola Grace Asogbon i Guanglin Li. "A Self-Learning and Adaptive Control Scheme for Phantom Prosthesis Control Using Combined Neuromuscular and Brain-Wave Bio-Signals". Engineering Proceedings 2, nr 1 (14.11.2020): 59. http://dx.doi.org/10.3390/ecsa-7-08169.
Pełny tekst źródłaNsugbe, Ejay, Carol Phillips, Mike Fraser i Jess McIntosh. "Gesture recognition for transhumeral prosthesis control using EMG and NIR". IET Cyber-Systems and Robotics 2, nr 3 (1.09.2020): 122–31. http://dx.doi.org/10.1049/iet-csr.2020.0008.
Pełny tekst źródłaHebert, Jacqueline S., K. Ming Chan i Michael R. Dawson. "Cutaneous sensory outcomes from three transhumeral targeted reinnervation cases". Prosthetics and Orthotics International 40, nr 3 (marzec 2016): 303–10. http://dx.doi.org/10.1177/0309364616633919.
Pełny tekst źródłaCifuentes-Cuadros, Alonso A., Enzo Romero, Sebastian Caballa, Daniela Vega-Centeno i Dante A. Elias. "The LIBRA NeuroLimb: Hybrid Real-Time Control and Mechatronic Design for Affordable Prosthetics in Developing Regions". Sensors 24, nr 1 (22.12.2023): 70. http://dx.doi.org/10.3390/s24010070.
Pełny tekst źródłaFite, Kevin B., Thomas J. Withrow, Xiangrong Shen, Keith W. Wait, Jason E. Mitchell i Michael Goldfarb. "A Gas-Actuated Anthropomorphic Prosthesis for Transhumeral Amputees". IEEE Transactions on Robotics 24, nr 1 (luty 2008): 159–69. http://dx.doi.org/10.1109/tro.2007.914845.
Pełny tekst źródłaLenzi, Tommaso, James Lipsey i Jonathon W. Sensinger. "The RIC Arm—A Small Anthropomorphic Transhumeral Prosthesis". IEEE/ASME Transactions on Mechatronics 21, nr 6 (grudzień 2016): 2660–71. http://dx.doi.org/10.1109/tmech.2016.2596104.
Pełny tekst źródłaSimon, Ann M., Kristi L. Turner, Laura A. Miller, Gregory A. Dumanian, Benjamin K. Potter, Mark D. Beachler, Levi J. Hargrove i Todd A. Kuiken. "Myoelectric prosthesis hand grasp control following targeted muscle reinnervation in individuals with transradial amputation". PLOS ONE 18, nr 1 (26.01.2023): e0280210. http://dx.doi.org/10.1371/journal.pone.0280210.
Pełny tekst źródłaMaas, Bart, Zack A. Wright, Blair A. Lock, Corry K. van der Sluis i Raoul M. Bongers. "Using Serious Games to Measure Upper-Limb Myoelectric Pattern Recognition Prosthesis Control Performance in an At-Home Environment". JPO Journal of Prosthetics and Orthotics 36, nr 3 (3.04.2024): 153–60. http://dx.doi.org/10.1097/jpo.0000000000000503.
Pełny tekst źródłaGu, Yikun, Dapeng Yang, Luke Osborn, Daniel Candrea, Hong Liu i Nitish Thakor. "An adaptive socket with auto-adjusting air bladders for interfacing transhumeral prosthesis: A pilot study". Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 233, nr 8 (5.06.2019): 812–22. http://dx.doi.org/10.1177/0954411919853960.
Pełny tekst źródłaSegura, Diego, Enzo Romero, Victoria E. Abarca i Dante A. Elias. "Upper Limb Prostheses by the Level of Amputation: A Systematic Review". Prosthesis 6, nr 2 (19.03.2024): 277–300. http://dx.doi.org/10.3390/prosthesis6020022.
Pełny tekst źródłaWang, Bingbin, Levi Hargrove, Xinqi Bao i Ernest N. Kamavuako. "Surface EMG Statistical and Performance Analysis of Targeted-Muscle-Reinnervated (TMR) Transhumeral Prosthesis Users in Home and Laboratory Settings". Sensors 22, nr 24 (14.12.2022): 9849. http://dx.doi.org/10.3390/s22249849.
Pełny tekst źródłaAhmed, Muhammad Hannan, Kyo Kutsuzawa i Mitsuhiro Hayashibe. "Transhumeral Arm Reaching Motion Prediction through Deep Reinforcement Learning-Based Synthetic Motion Cloning". Biomimetics 8, nr 4 (15.08.2023): 367. http://dx.doi.org/10.3390/biomimetics8040367.
Pełny tekst źródłaNsugbe, Ejay, Oluwarotimi Williams Samuel, Mojisola Grace Asogbon i Guanglin Li. "Phantom motion intent decoding for transhumeral prosthesis control with fused neuromuscular and brain wave signals". IET Cyber-Systems and Robotics 3, nr 1 (marzec 2021): 77–88. http://dx.doi.org/10.1049/csy2.12009.
Pełny tekst źródłaSchlüter, Christoph, Washington Caraguay i Doris Cáliz Ramos. "Development of a low-cost EMG-data acquisition armband to control an above-elbow prosthesis". Journal of Physics: Conference Series 2232, nr 1 (1.05.2022): 012019. http://dx.doi.org/10.1088/1742-6596/2232/1/012019.
Pełny tekst źródłaSchofield, Jonathon S., Katherine R. Schoepp, Michael Stobbe, Paul D. Marasco i Jacqueline S. Hebert. "Fabrication and application of an adjustable myoelectric transhumeral prosthetic socket". Prosthetics and Orthotics International 43, nr 5 (29.03.2019): 564–67. http://dx.doi.org/10.1177/0309364619836353.
Pełny tekst źródłaLi, Sujiao, Wanjing Sun, Wei Li i Hongliu Yu. "Enhancing Robustness of Surface Electromyography Pattern Recognition at Different Arm Positions for Transhumeral Amputees Using Deep Adversarial Inception Domain Adaptation". Applied Sciences 14, nr 8 (18.04.2024): 3417. http://dx.doi.org/10.3390/app14083417.
Pełny tekst źródłaPulliam, Christopher L., Joris M. Lambrecht i Robert F. Kirsch. "Electromyogram-based neural network control of transhumeral prostheses". Journal of Rehabilitation Research and Development 48, nr 6 (2011): 739. http://dx.doi.org/10.1682/jrrd.2010.12.0237.
Pełny tekst źródłaHallworth, Ben W., James A. Austin, Heather E. Williams, Mayank Rehani, Ahmed W. Shehata i Jacqueline S. Hebert. "A Modular Adjustable Transhumeral Prosthetic Socket for Evaluating Myoelectric Control". IEEE Journal of Translational Engineering in Health and Medicine 8 (2020): 1–10. http://dx.doi.org/10.1109/jtehm.2020.3006416.
Pełny tekst źródłaMerad, M., E. de Montalivet, M. Legrand, E. Mastinu, M. Ortiz-Catalan, A. Touillet, N. Martinet, J. Paysant, A. Roby-Brami i N. Jarrasse. "Assessment of an Automatic Prosthetic Elbow Control Strategy Using Residual Limb Motion for Transhumeral Amputated Individuals With Socket or Osseointegrated Prostheses". IEEE Transactions on Medical Robotics and Bionics 2, nr 1 (luty 2020): 38–49. http://dx.doi.org/10.1109/tmrb.2020.2970065.
Pełny tekst źródłaKALIKI, RAHUL R., RAHMAN DAVOODI i GERALD E. LOEB. "PREDICTION OF ELBOW TRAJECTORY FROM SHOULDER ANGLES USING NEURAL NETWORKS". International Journal of Computational Intelligence and Applications 07, nr 03 (wrzesień 2008): 333–49. http://dx.doi.org/10.1142/s1469026808002296.
Pełny tekst źródłaJarrasse, N., D. Müller, E. De Montalivet, F. Richer, M. Merad, A. Touillet, N. Martinet i J. Paysant. "A simple movement based control approach to ease the control of a myoelectric elbow prosthetics in transhumeral amputees". Annals of Physical and Rehabilitation Medicine 61 (lipiec 2018): e471. http://dx.doi.org/10.1016/j.rehab.2018.05.1100.
Pełny tekst źródłaCooke, Deirdre M., Matthew Ames i Saul Geffen. "Life without limbs: Technology to the rescue". Prosthetics and Orthotics International 40, nr 4 (27.04.2015): 517–21. http://dx.doi.org/10.1177/0309364615579316.
Pełny tekst źródłaLontis, Eugen Romulus, Ken Yoshida i Winnie Jensen. "Non-Invasive Sensory Input Results in Changes in Non-Painful and Painful Sensations in Two Upper-Limb Amputees". Prosthesis 6, nr 1 (19.12.2023): 1–23. http://dx.doi.org/10.3390/prosthesis6010001.
Pełny tekst źródłaWATANABE, Takahiro, Kengo OHNISHI i Keiji IMADO. "B211 Fundamental experiment for mechanics-based adjustment of the Bowden cable control system for body-powered transhumeral prostheses". Proceedings of the JSME Conference on Frontiers in Bioengineering 2007.18 (2007): 133–34. http://dx.doi.org/10.1299/jsmebiofro.2007.18.133.
Pełny tekst źródłaZbinden, Jan, Paolo Sassu, Enzo Mastinu, Eric J. Earley, Maria Munoz-Novoa, Rickard Brånemark i Max Ortiz-Catalan. "Improved control of a prosthetic limb by surgically creating electro-neuromuscular constructs with implanted electrodes". Science Translational Medicine 15, nr 704 (12.07.2023). http://dx.doi.org/10.1126/scitranslmed.abq3665.
Pełny tekst źródłaEarley, Eric J., Anton Berneving, Jan Zbinden i Max Ortiz-Catalan. "Neurostimulation artifact removal for implantable sensors improves signal clarity and decoding of motor volition". Frontiers in Human Neuroscience 16 (19.10.2022). http://dx.doi.org/10.3389/fnhum.2022.1030207.
Pełny tekst źródłaRazak, N. A. Abd, H. Gholizadeh, N. Hasnan, N. A. Abu Osman, S. S. Mohd Fadzil i N. A. Hashim. "An anthropomorphic transhumeral prosthesis socket developed based on an oscillometric pump and controlled by force-sensitive resistor pressure signals". Biomedical Engineering / Biomedizinische Technik 62, nr 1 (1.01.2017). http://dx.doi.org/10.1515/bmt-2015-0106.
Pełny tekst źródła"Towards Control of a Transhumeral Prosthesis with EEG Signals". Bioengineering 5, nr 2 (22.03.2018): 26. http://dx.doi.org/10.3390/bioengineering5020026.
Pełny tekst źródłaToedtheide, Alexander, Edmundo Pozo Fortunić, Johannes Kühn, Elisabeth Jensen i Sami Haddadin. "A transhumeral prosthesis with an artificial neuromuscular system: Sim2real-guided design, modeling, and control". International Journal of Robotics Research, 20.02.2024. http://dx.doi.org/10.1177/02783649231218719.
Pełny tekst źródłaSattar, Neelum Yousaf, Zareena Kausar, Syed Ali Usama, Umer Farooq i Umar Shahbaz Khan. "EMG Based Control of Transhumeral Prosthesis Using Machine Learning Algorithms". International Journal of Control, Automation and Systems, 27.07.2021. http://dx.doi.org/10.1007/s12555-019-1058-5.
Pełny tekst źródłaSaid, Hakim, Todd Kuiken, Robert Lipzchutz, Laura Miller i Gregory Dumanian. "Nerve Transfers in Transhumeral Amputation: Creating Myoneurosomes for Improved Myoelectric Prosthesis Control". Journal of Reconstructive Microsurgery 21, nr 07 (13.10.2005). http://dx.doi.org/10.1055/s-2005-918994.
Pełny tekst źródłaMastinu, Enzo, Leonard F. Engels, Francesco Clemente, Mariama Dione, Paolo Sassu, Oskar Aszmann, Rickard Brånemark i in. "Neural feedback strategies to improve grasping coordination in neuromusculoskeletal prostheses". Scientific Reports 10, nr 1 (16.07.2020). http://dx.doi.org/10.1038/s41598-020-67985-5.
Pełny tekst źródłaSegas, Effie, Sébastien Mick, Vincent Leconte, Océane Dubois, Rémi Klotz, Daniel Cattaert i Aymar de Rugy. "Intuitive movement-based prosthesis control enables arm amputees to reach naturally in virtual reality". eLife 12 (17.10.2023). http://dx.doi.org/10.7554/elife.87317.3.
Pełny tekst źródłaJarrassé, Nathanaël, Etienne de Montalivet, Florian Richer, Caroline Nicol, Amélie Touillet, Noël Martinet, Jean Paysant i Jozina B. de Graaf. "Phantom-Mobility-Based Prosthesis Control in Transhumeral Amputees Without Surgical Reinnervation: A Preliminary Study". Frontiers in Bioengineering and Biotechnology 6 (29.11.2018). http://dx.doi.org/10.3389/fbioe.2018.00164.
Pełny tekst źródłaJasti, Harshitha. "Utilizing EEG Signal Data and Motion to Aid in Prosthetic Hand Motion". Journal of Student Research 12, nr 4 (30.11.2023). http://dx.doi.org/10.47611/jsrhs.v12i4.5883.
Pełny tekst źródłaToedtheide, Alexander, Edmundo Pozo Fortunić, Johannes Kühn, Elisabeth Rose Jensen i Sami Haddadin. "A Wearable Force-Sensitive and Body-Aware Exoprosthesis for a Transhumeral Prosthesis Socket". IEEE Transactions on Robotics, 2023, 1–21. http://dx.doi.org/10.1109/tro.2023.3251947.
Pełny tekst źródłaChateaux, Manon, Olivier Rossel, Fabien Vérité, Caroline Nicol, Amélie Touillet, Jean Paysant, Nathanaël Jarrassé i Jozina B. De Graaf. "New insights into muscle activity associated with phantom hand movements in transhumeral amputees". Frontiers in Human Neuroscience 18 (30.08.2024). http://dx.doi.org/10.3389/fnhum.2024.1443833.
Pełny tekst źródłaChi, Albert. "Improved Control of a Virtual Prosthesis Using a Pattern Recognition Algorithm and an Interactive Training Environment in a Transhumeral Amputee Demonstrating Local Reinnervation". Biomedical Journal of Scientific & Technical Research 18, nr 3 (28.05.2019). http://dx.doi.org/10.26717/bjstr.2019.18.003143.
Pełny tekst źródłaBrauckmann, Vesta, Jorge Mayor, Luisa Ernst i Jennifer Ernst. "How a robotic visualization system can facilitate targeted muscle reinnervation". Journal of Reconstructive Microsurgery Open, 21.07.2023. http://dx.doi.org/10.1055/a-2134-8633.
Pełny tekst źródła