Gotowa bibliografia na temat „Transhumeral prosthesis control”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Transhumeral prosthesis control”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Transhumeral prosthesis control"
Tereshenko, Vlad, Riccardo Giorgino, Kyle R. Eberlin, Ian L. Valerio, Jason M. Souza, Mario Alessandri-Bonetti, Giuseppe M. Peretti i Oskar C. Aszmann. "Emerging Value of Osseointegration for Intuitive Prosthetic Control after Transhumeral Amputations: A Systematic Review". Plastic and Reconstructive Surgery - Global Open 12, nr 5 (maj 2024): e5850. http://dx.doi.org/10.1097/gox.0000000000005850.
Pełny tekst źródłade Backer-Bes, Femke, Maaike Lange, Michael Brouwers i Iris van Wijk. "De Hoogstraat Xperience Prosthesis Transhumeral: An Innovative Test Prosthesis". JPO Journal of Prosthetics and Orthotics 36, nr 3 (lipiec 2024): 193–97. http://dx.doi.org/10.1097/jpo.0000000000000510.
Pełny tekst źródłaSattar, Neelum Yousaf, Zareena Kausar, Syed Ali Usama, Umer Farooq, Muhammad Faizan Shah, Shaheer Muhammad, Razaullah Khan i Mohamed Badran. "fNIRS-Based Upper Limb Motion Intention Recognition Using an Artificial Neural Network for Transhumeral Amputees". Sensors 22, nr 3 (18.01.2022): 726. http://dx.doi.org/10.3390/s22030726.
Pełny tekst źródłaMolina Arias, Ludwin, Marek Iwaniec, Paulina Pirowska, Magdalena Smoleń i Piotr Augustyniak. "Head and Voice-Controlled Human-Machine Interface System for Transhumeral Prosthesis". Electronics 12, nr 23 (24.11.2023): 4770. http://dx.doi.org/10.3390/electronics12234770.
Pełny tekst źródłaAlshammary, Nasser A., Daniel A. Bennett i Michael Goldfarb. "Synergistic Elbow Control for a Myoelectric Transhumeral Prosthesis". IEEE Transactions on Neural Systems and Rehabilitation Engineering 26, nr 2 (luty 2018): 468–76. http://dx.doi.org/10.1109/tnsre.2017.2781719.
Pełny tekst źródłaAhmed, Muhammad Hannan, Jiazheng Chai, Shingo Shimoda i Mitsuhiro Hayashibe. "Synergy-Space Recurrent Neural Network for Transferable Forearm Motion Prediction from Residual Limb Motion". Sensors 23, nr 9 (22.04.2023): 4188. http://dx.doi.org/10.3390/s23094188.
Pełny tekst źródłaOʼShaughnessy, Kristina D., Gregory A. Dumanian, Robert D. Lipschutz, Laura A. Miller, Kathy Stubblefield i Todd A. Kuiken. "Targeted Reinnervation to Improve Prosthesis Control in Transhumeral Amputees". Journal of Bone & Joint Surgery 90, nr 2 (luty 2008): 393–400. http://dx.doi.org/10.2106/jbjs.g.00268.
Pełny tekst źródłaNsugbe, Ejay, Oluwarotimi Williams Samuel, Mojisola Grace Asogbon i Guanglin Li. "A Self-Learning and Adaptive Control Scheme for Phantom Prosthesis Control Using Combined Neuromuscular and Brain-Wave Bio-Signals". Engineering Proceedings 2, nr 1 (14.11.2020): 59. http://dx.doi.org/10.3390/ecsa-7-08169.
Pełny tekst źródłaNsugbe, Ejay, Carol Phillips, Mike Fraser i Jess McIntosh. "Gesture recognition for transhumeral prosthesis control using EMG and NIR". IET Cyber-Systems and Robotics 2, nr 3 (1.09.2020): 122–31. http://dx.doi.org/10.1049/iet-csr.2020.0008.
Pełny tekst źródłaHebert, Jacqueline S., K. Ming Chan i Michael R. Dawson. "Cutaneous sensory outcomes from three transhumeral targeted reinnervation cases". Prosthetics and Orthotics International 40, nr 3 (marzec 2016): 303–10. http://dx.doi.org/10.1177/0309364616633919.
Pełny tekst źródłaRozprawy doktorskie na temat "Transhumeral prosthesis control"
Mérad, Manelle. "Investigations on upper limb prosthesis control with an active elbow". Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066615/document.
Pełny tekst źródłaProgress in mechatronics has enabled the improvement of upper limb prosthetics increasing the grasps catalog. However, a gap has been growing between the prosthesis technological possibilities and the methods to control it. Indeed, common myoelectric control strategy remains complex, especially for transhumeral amputees who can have an active elbow in addition to a prosthetic wrist and hand. Since most transhumeral amputees have a mobile residual limb, an interesting approach aims at utilizing this mobility to control intermediate prosthetic joints, like the elbow, based on the shoulder/elbow coordination observed in healthy movements. This thesis investigates the possibility of controlling an active prosthetic elbow using the residual limb motion, measured with inertial measurement units, and knowledge of the human motor control. A primary focus has been targeting the reaching movement for which a model has been built using regression tools and kinematic data from several healthy individuals. The model, implemented on a prosthesis prototype, has been tested with 10 healthy participants wearing the prototype to validate the concept, and with 6 amputated individuals. These participants also performed the task with a conventional myoelectric control strategy for comparison purpose. The results show that the inter-joint coordination-based control strategy is satisfying in terms of intuitiveness and reduction of the compensatory strategies
Lento, Bianca. "Contrôle biomimétique de prothèse à partir de mouvements naturels : base de données et transformation de référentiel pour une situation réelle". Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0183.
Pełny tekst źródłaMyoelectric controls for transhumeral prostheses often lead to high rates of device abandonment due to their unsatisfactory performance. Grounded on advances in movement-based prosthesis control, we refined an alternative approach using an artificial neural network trained on natural arm movements to predict the configuration of distal joints based on proximal joint motion and movement goals. Previous studies have shown that this control strategy enabled individuals with transhumeral limb loss to control a prosthesis avatar in a virtual reality environment as well as with their valid arm. Yet, deploying this control system in real-world requires further development. A head-mounted camera and computer vision algorithms need to be integrated into the system for real-time object pose estimation. In this setup, object information might only be available in a head-centered reference frame, while our control relies on the object expressed in a shoulder reference frame. Taking inspiration from how the brain executes coordinate transformations, we developed and tested solutions to perform the required head-to-shoulder transformation from orientation-only data, possibly available in real-life settings. To develop these algorithms, we gathered a dataset reflecting the relationship between these reference frames by involving twenty intact-limbs participants in picking and placing objects in various positions and orientations in a virtual environment. This dataset included head and gaze motion, along with movements of the trunk, shoulders, and arm joints, capturing the entire kinematic chain between the movement goal and the hand moved to reach it. Following data collection, we implemented two methods to transform target information from the head to the shoulder reference frame. The first is an artificial neural network trained offline on the dataset to predict the head position in the shoulder referential given ongoing shoulder and head orientations and the participant height. The second method draws inspiration from multisensory integration in the brain. It derives the head position in the shoulder referential by comparing data about the prosthetic hand obtained in the shoulder referential through forward kinematics and simultaneously in the head referential through computer vision. Inspired by brain’s mechanisms for peripersonal space coding, we encoded this difference in a spatial map by adapting the weights of a single-layer network of spatially tuned neurons online. Experimental results on twelve intact-limbs participants controlling a prosthesis avatar in virtual reality demonstrated persistent errors with the first method, which failed to adequately account for the specificity of the user’s morphology, resulting in significant prediction errors and ineffective prosthesis control. In contrast, the second method elicited much better results and effectively encoded the transition from the head to the shoulder associated with different targets in space. Despite requiring an adaptation period, subsequent performances on already explored targets were comparable to the ideal scenario. The effectiveness of the second method was also tested on six participants with transhumeral limb loss in virtual reality, and a physical proof of concept was implemented on a teleoperated robotic platform with simple computer vision to assess feasibility in real-life settings. One intact-limbs participant controlled the robotic platform REACHY 2 to grasp cylinders on a board. ArUco markers on the robot’s end effector and cylinders coupled with a gaze-guided computer vision algorithm enabled precise object pose estimation. The results of this proof of concept suggest that despite challenges in object detection, our bio-inspired spatial map effectively operates in real-world scenarios. This method also shows promise for handling complex scenarios involving errors in position and orientation, such as moving a camera or operating in perturbed environments
Części książek na temat "Transhumeral prosthesis control"
Brånemark, Rickard. "Advanced Prosthetic Control in Transhumeral Amputees Using Osseointegration and Bidirectional Neuromuscular Interfaces". W Biosystems & Biorobotics, 25–27. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08072-7_6.
Pełny tekst źródłaBarron, Olivier, Maxime Raison i Sofiane Achiche. "Control of transhumeral prostheses based on electromyography pattern recognition: from amputees to deep learning". W Powered Prostheses, 1–21. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-12-817450-0.00001-8.
Pełny tekst źródłaAli Syed, Usama, Zareena Kausar i Neelum Yousaf Sattar. "Control of a Prosthetic Arm Using fNIRS, a Neural-Machine Interface". W Data Acquisition - Recent Advances and Applications in Biomedical Engineering [Working Title]. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.93565.
Pełny tekst źródłaStreszczenia konferencji na temat "Transhumeral prosthesis control"
Sittiwanchai, Teppakorn, Ippei Nakayama, Shinichi Inoue i Jun Kobayashi. "Transhumeral prosthesis prototype with 3D printing and sEMG-based elbow joint control method". W 2014 International Conference on Advanced Mechatronic Systems (ICAMechS). IEEE, 2014. http://dx.doi.org/10.1109/icamechs.2014.6911655.
Pełny tekst źródłaNguyen, Phuong Duy, i Chi Thanh Pham. "Towards a modular and dexterous transhumeral prosthesis based on bio-signals and active vision". W 2019 IEEE International Symposium on Measurement and Control in Robotics (ISMCR). IEEE, 2019. http://dx.doi.org/10.1109/ismcr47492.2019.8955664.
Pełny tekst źródłaRuhunage, Isuru, Sanjaya Mallikarachchi, Dulith Chinthaka, Janith Sandaruwan i Thilina Dulantha Lalitharatne. "Hybrid EEG-EMG Signals Based Approach for Control of Hand Motions of a Transhumeral Prosthesis". W 2019 IEEE 1st Global Conference on Life Sciences and Technologies (LifeTech). IEEE, 2019. http://dx.doi.org/10.1109/lifetech.2019.8883865.
Pełny tekst źródłaBakshi, Koushik, Rajesh Pramanik, M. Manjunatha i C. S. Kumar. "Upper Limb Prosthesis Control: A Hybrid EEG-EMG Scheme for Motion Estimation in Transhumeral Subjects". W 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2018. http://dx.doi.org/10.1109/embc.2018.8512678.
Pełny tekst źródłaJarrasse, Nathanael, Caroline Nicol, Florian Richer, Amelie Touillet, Noel Martinet, Jean Paysant i Jozina B. De Graaf. "Voluntary phantom hand and finger movements in transhumerai amputees could be used to naturally control polydigital prostheses". W 2017 International Conference on Rehabilitation Robotics (ICORR). IEEE, 2017. http://dx.doi.org/10.1109/icorr.2017.8009419.
Pełny tekst źródła