Gotowa bibliografia na temat „Transfert de Lipides”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Transfert de Lipides”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Transfert de Lipides"
Rougé, P., J. P. Borges, R. Culerrier, C. Brulé, A. Didier i A. Barre. "Les protéines de transfert des lipides : des allergènes importants des fruits". Revue Française d'Allergologie 49, nr 2 (marzec 2009): 58–61. http://dx.doi.org/10.1016/j.reval.2009.01.003.
Pełny tekst źródłaGhanem, R., A. Bouraoui, M. Berchel, T. Le Gall, O. Lozach, P. A. Jaffrès i T. Montier. "Lipides cationiques ramifiés pour le transfert de gènes par aérosol appliqué à la mucoviscidose". Revue des Maladies Respiratoires 38, nr 6 (czerwiec 2021): 584–85. http://dx.doi.org/10.1016/j.rmr.2021.02.035.
Pełny tekst źródłaHAFFRAY, P., C. PINCENT, P. RAULT i B. COUDURIER. "Domestication et amélioration génétique des cheptels piscicoles français dans le cadre du SYSAAF". INRAE Productions Animales 17, nr 3 (29.07.2004): 243–52. http://dx.doi.org/10.20870/productions-animales.2004.17.3.3598.
Pełny tekst źródłaMOULOUNGUI, Z., E. LACROUX, C. VACA-GARCIA i J. PEYDECASTAING. "Destruction des farines animales : valorisation des fractions lipidiques en biolubrifiants et additifs biocarburants, et du résidu protéique (ou de l’ensemble)". INRAE Productions Animales 17, HS (20.12.2004): 117–22. http://dx.doi.org/10.20870/productions-animales.2004.17.hs.3637.
Pełny tekst źródłaPellerin-Massicotte, Jocelyne, Bruno Vincent i Émilien Pelletier. "Évaluation écotoxicologique de la baie des Anglais à Baie-Comeau (Québec)". Water Quality Research Journal 28, nr 4 (1.11.1993): 665–86. http://dx.doi.org/10.2166/wqrj.1993.035.
Pełny tekst źródłaLevine, Tim P. "A lipid transfer protein that transfers lipid". Journal of Cell Biology 179, nr 1 (8.10.2007): 11–13. http://dx.doi.org/10.1083/jcb.200709055.
Pełny tekst źródłaValverde, Diana P., Shenliang Yu, Venkata Boggavarapu, Nikit Kumar, Joshua A. Lees, Thomas Walz, Karin M. Reinisch i Thomas J. Melia. "ATG2 transports lipids to promote autophagosome biogenesis". Journal of Cell Biology 218, nr 6 (5.04.2019): 1787–98. http://dx.doi.org/10.1083/jcb.201811139.
Pełny tekst źródłaDaminelli, Elaine Nunes, Celso Spada, Arício Treitinger, Tatiane Vanessa Oliveira, Maria da Conceição Latrilha i Raul Cavalcante Maranhão. "Alterations in lipid transfer to High-Density Lipoprotein (HDL) and activity of paraoxonase-1 in HIV+ patients". Revista do Instituto de Medicina Tropical de São Paulo 50, nr 4 (sierpień 2008): 223–27. http://dx.doi.org/10.1590/s0036-46652008000400007.
Pełny tekst źródłaDougan, Stephanie K., Azucena Salas, Paul Rava, Amma Agyemang, Arthur Kaser, Jamin Morrison, Archana Khurana i in. "Microsomal triglyceride transfer protein lipidation and control of CD1d on antigen-presenting cells". Journal of Experimental Medicine 202, nr 4 (8.08.2005): 529–39. http://dx.doi.org/10.1084/jem.20050183.
Pełny tekst źródłaBianco, Mariachiara, Giovanni Ventura, Davide Coniglio, Antonio Monopoli, Ilario Losito, Tommaso R. I. Cataldi i Cosima D. Calvano. "Development of a New Binary Matrix for the Comprehensive Analysis of Lipids and Pigments in Micro- and Macroalgae Using MALDI-ToF/ToF Mass Spectrometry". International Journal of Molecular Sciences 25, nr 11 (29.05.2024): 5919. http://dx.doi.org/10.3390/ijms25115919.
Pełny tekst źródłaRozprawy doktorskie na temat "Transfert de Lipides"
Réthoré, Gildas. "Analogues de lipides membranaires d'archaebacéries : nouveaux vecteurs synthétiques pour le transfert de gènes". Rennes 1, 2005. http://www.theses.fr/2005REN1S093.
Pełny tekst źródłaCharvolin, Delphine. "Études structurales des protéines de transfert de lipides du mais et du blé : caractérisation de l'interaction entre protéine et lipide". Grenoble 1, 1997. http://www.theses.fr/1997GRE10008.
Pełny tekst źródłaBoulanger, Caroline. "Nouveaux lipides fluorés et conjugués acridine-peptide de localisation nucléaire pour le transfert de gènes". Nice, 2004. http://www.theses.fr/2004NICE4017.
Pełny tekst źródłaThe present work is about the synthesis and evaluation of new fluorinated lipids and acridine-nuclear localisation signal (NLS) for gene transfer. Indeed, in order to increase the performances of synthetic vectors, two kinds of molecules have been developed. The first one regroups fluorinated analogs of the synthetic gene carriers agents GAP-DLRIE and DOSPA and of the “helper”lipid DOPE. The presence of the fluorinated tails increases the hydrophobicity and confers lipophobicity to the lipoplexes their form. So, their stability and resistance in aggressive biological medium (for example pulmonary surfactant). The second family is made of acridine-linker-NLS conjugates to improve the nuclear import in gene transfer using synthetic vectors
Jemaiel, Aymen. "Etude du trafic membranaire vésiculaire et non-vésiculaire chez la levure". Thesis, Paris 11, 2013. http://www.theses.fr/2013PA112348/document.
Pełny tekst źródłaEukaryotic cells are characterized by their internal membrane compartmentalization, with the various specialized organelles of the cell bounded by lipid membranes. Communication between different cellular compartments occurs via two transport pathways: vesicular transport and non-vesicular transport. Vesicular transport carries both proteins and lipids from one compartment to another in cells, whereas non-vesicular transport carries only lipids. An emerging idea is the important role that lipids play in cellular organization. Lipid binding amphipathic helices such as the ALPS (amphipathic lipid packing sensor) motif are targeted to membranes of a specific lipid composition, and hence act to transfer information encoded in membrane lipids to the vesicle trafficking machinery. The lipid composition of the membranes of different organelles is therefore of great importance. One mechanism that cells use to maintain the distinct lipid compositions of organelles is lipid transport, which occurs preferentially at membrane contact sites (MCS). MCS are regions of close appositions, on the order of 10 to 30 nm, between two membranes, generally between the membrane of the endoplasmic reticulum (ER) and another organelle. In my thesis, I addressed two aspects of how lipids and their transport function in intracellular trafficking, using yeast as a model system. First, I studied amphipathic motifs that mediate targeting of proteins to specific compartments in cells. Lipid binding amphipathic helices were shown in a previous study in the laboratory to mediate specific targeting to distinct lipid environments via direct protein-lipid interactions, both in vitro and in cells. One of these, the ALPS motif, targets vesicles of the early secretory pathway. The other, alpha-synuclein, targets vesicles travelling between the late Golgi, the plasma membrane and endosomes. I studied new potential alpha-synuclein-like motifs in yeast proteins, and their roles in cells. In a second project, in collaboration with the laboratory of Dr. Thierry Galli, I studied new compenents involved in lipid metabolism at contact sites between the endoplasmic reticulum and the plasma membrane. Maja Petkovic in the laboratory of Thierry Galli made the important discovery that the ER-localized SNARE protein Sec22 interacts with a plasma membrane syntaxin in neurons, thus providing a novel mechanism for mediating close contact between these two membranes. I addressed the question of whether this mechanism is conserved in yeast. The results I obtained confirmed that yeast Sec22 is able to interact with a SNARE protein localized to the plasma membrane, Sso1. I found by co-immunoprecitation that Sec22 and Sso1 both interact with lipid transfer proteins localized to ER-plasma membrane contact sites. Using a specific probe for phosphatidylinositol-4 phosphate (PI4P), we showed that Sec22 was involved in regulating the level of PI4P at the plasma membrane. These results extend to yeast those obtained by Maja Petkovic, Thierry Galli and colleauges showing that Sec22 has a novel role at ER-plasma membrane contact sites, and suggest that this SNARE complex might be implicated in lipid transfer at these sites in yeast
Borges, Jean-Philippe. "Caractérisation structurale et immunologique d'allergènes alimentaires : les protéines de transfert de lipides de fruits". Toulouse 3, 2008. http://thesesups.ups-tlse.fr/209/.
Pełny tekst źródłaNon-specific Lipid Transfer Proteins (nsLTP) share, on their molecular surface, some IgE-binding areas responsible for their allergenicity. Analyzing the conformation of these epitopes is an important step for understanding the molecular basis of the allergic reaction. IgE-binding epitopes of nsLTP from plants were predicted using a combination of predictive tools and subsequently characterized by biochemical and immunological approaches using IgE from allergic patients. Consensus epitopic regions responsible for some IgE-binding cross-reactivity among different Rosaceae fruits were identified by epitope mapping and conformational analysis. The localization and distribution of nsLTP allergens in the skin and pulp of different fruits has been investigated. NsLTP essentially concentrate as surface allergens in the pericarp of the fruits whereas the pulp contains lower amounts of allergens. NsLTP from apple and peach were produced as correctly-folded and reactive recombinant allergens, usable as standardized allergens for diagnosis and immunotherapy purposes
Belmadi, Nawal. "Développement, formulation et biodistribution de vecteurs synthétiques pour le transfert de gènes dans le cadre de la thérapie génique de la mucoviscidose". Thesis, Brest, 2015. http://www.theses.fr/2015BRES0093/document.
Pełny tekst źródłaCystic fibrosis is a monogenic disease characterized by mutations occurring at the CFTR (Cystic Fibrosis Transmembrane Conductance Regulator) gene. The clonining in 1989 of the CFTR gene has enabled to consider treating this disease by gene therapy. This consists of transferring a normal version of the CFTR gene in the affected patients’ cells, using a vector. Due to the severity of pulmonary complications, it is obvious that the respiratory epithelium constitutes the target tissue for the gene transfer. The principle of gene therapy is indeed very attractive and a number of clinical trials have already been made. Gene therapy requires vectorization tools that are efficient and compatible with repeated clinical use.My thesis has focused on the development, biodistribution and optimization of synthetic vectors (cationic lipids) for gene transfer in the respiratory epithelium. During my work, we were able to develop useful fluorescent KLN47 lipophosphoramidates for in vivo biodistribution studies. Compared to non fluorescent KLN47, these new compounds exhibit the same physicochemical properties: a relatively small size and a positive zeta potential. On cell lines, we found that the new formulations were as effective as the KLN47, with little or no toxicity. Then, in animal models, the biodistribution profiles of pegylated and non-pegylated lipoplexes were compared after systemic injection. The biodistribution profiles of pegylated and non-pegylated lipoplexes were similar. However, the pegylation of the complex resulted in prolonged circulation in the bloodstream, whereas transgene expression (luciferase) was equivalent in both cases. In addition, luciferase activity was similar to that obtained with the non-fluorescent KLN47. We have demonstrated that the addition of fluorescent lipid probes in the liposomal solution KLN47, does not change its physicochemical and transfectant properties. The overall results show that we have promising tools for in vivo biodistribution studies. Other molecules have also been tested successfully
Dieryck, Wilfrid. "ETUDE DES GENES CODANT POUR LES PROTEINES DE TRANSFERT DE LIPIDES DE 9 ET 7 kDa DE BLE DUR. PRODUCTION DE LA PROTEINE DE TRANSFERT DE LIPIDES DE 9 kDa DANS E. COLI". Clermont-Ferrand 2, 1993. http://www.theses.fr/1993CLF21504.
Pełny tekst źródłaAverlant-Petit, Marie-Christine. "Etude par rmn 2d de la structure tridimensionnelle en solution aqueuse, de proteines de transfert de lipides, et de leurs interactions avec les lipides". Paris 6, 1994. http://www.theses.fr/1994PA066424.
Pełny tekst źródłaArondel, Vincent. "Les proteines de transfert de lipides chez les vegetaux superieurs : purification, biosynthese, caracterisation d'adn complementaire". Paris 6, 1989. http://www.theses.fr/1989PA066543.
Pełny tekst źródłaJacq, Adélaïde. "Caractérisation fonctionnelle d'AtLTP2, une protéine de transfert de lipides impliquée dans le contrôle de l'intégrité de la cuticule chez Arabidopsis thaliana". Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30316.
Pełny tekst źródłaThe cuticle is a hydrophobic layer that covers the surface of the aerial organs of land plants. The cuticle plays numerous roles in plants from resistance against biotic and abiotic stresses to several developmental processes. Although the understanding of the biosynthesis of cuticle has considerably increased last years, the mechanisms underlying the transport of cuticular lipids through the cell wall and their assembly within the cuticle have been poorly characterized. nsLTPs (non-specific Lipid Transfer Proteins) are encoded by a multigenic family in A. thaliana and are involved in several biological processes. Among the different roles proposed for nsLTPs, it has long been suggested that they could transport cuticular precursor across the cell wall and then could contribute to the cuticle formation, despite the absence of formal evidence for individual members. Here we took advantage of the A. thaliana etiolated hypocotyls model to characterize the biological function of AtLTP2. Indeed, AtLTP2 was found to be abundant and the unique nsLTP member in the cell wall proteome of etiolated hypocotyls. We have first confirmed the high level of AtLTP2 expression during the young developmental stages of etiolated seedlings that was restricted to the epidermal cells of aerial organs, that are covered by the cuticle. In agreement with the cell wall localization determined by previous proteomic studies, we localized AtLTP2 fused to a fluorescent marker to the cell wall, but also and surprisingly to the plastids. This remarkable dual localization in the cell wall and plastids was never described before for a nsLTP. Furthermore, the mechanism of AtLTP2 transport to the plastids was particularly original because AtLTP2 can first undergo import into the ER/ secretory pathway and then sorting to the cell wall and the plastids. By studying the sub-cellular localization of truncated version of AtLTP2, we have shown that its tertiary conformation was crucial for the plastidial localization. By using reverse genetic approaches, we have shown that atltp2 mutants displayed a high increase in cuticle permeability strongly correlated with a deep modification of the ultra-structure at the cuticle-cell wall interface, while no changes in biochemical composition of the cuticle were detected. These results prompt us to suggest a novel structural role for AtLTP2. AtLTP2 could be involved in maintaining the accurate sealing between the hydrophobic cuticle and the hydrophilic underlying cell wall. Then, by preserving the integrity of the cuticle-cell wall interface, AtLTP2 could act on the barrier function of the cuticle limiting water loss. Interestingly, the dual localization to the cell wall and plastids suggested that other functions could be assigned to AtLTP2. The elucidation of the molecular mechanisms by which AtLTP2 establish cell wall-cuticle homeostasis and the exact function of the dual targeting will be challenging tasks in the future to better identify the main actors of the formation of the cuticle
Książki na temat "Transfert de Lipides"
II, Université de Bordeaux, red. Etude in vivo du transfert intermembranaire des lipides et des AGTLC à la membrane plasmique de plantules étiolées d'Allium porrum L. Grenoble: A.N.R.T. Université Pierre Mendès France Grenoble 2, 1986.
Znajdź pełny tekst źródłaJiang, Xian-Cheng, red. Lipid Transfer in Lipoprotein Metabolism and Cardiovascular Disease. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6082-8.
Pełny tekst źródłaStrauss, Mike. Cryo-electron microscopy of membrane proteins; lipid bilayer supports and vacuum-cryo-transfer. Ottawa: National Library of Canada, 2003.
Znajdź pełny tekst źródłaHilderson, Herwig J. Subcellular Biochemistry: Intracellular Transfer of Lipid Molecules. Springer London, Limited, 2013.
Znajdź pełny tekst źródłaHilderson, Herwig J. Subcellular Biochemistry: Intracellular Transfer of Lipid Molecules. Springer, 2013.
Znajdź pełny tekst źródłaIntracellular Transfer of Lipid Molecules (Subcellular Biochemistry). Springer, 1990.
Znajdź pełny tekst źródłaJiang, Xian-Cheng. Lipid Transfer in Lipoprotein Metabolism and Cardiovascular Disease. Springer, 2020.
Znajdź pełny tekst źródłaJiang, Xian-Cheng. Lipid Transfer in Lipoprotein Metabolism and Cardiovascular Disease. Springer Singapore Pte. Limited, 2021.
Znajdź pełny tekst źródłaJiang, Xian-Cheng. Lipid Transfer in Lipoprotein Metabolism and Cardiovascular Disease. Springer, 2020.
Znajdź pełny tekst źródłaErnst, Wagner, Dexi Liu i Leaf Huang. Nonviral Vectors for Gene Therapy: Lipid- and Polymer-Based Gene Transfer. Elsevier Science & Technology Books, 2014.
Znajdź pełny tekst źródłaCzęści książek na temat "Transfert de Lipides"
Guerbette, F., A. Jolliot, J. C. Kader i M. Grosbois. "Binding of Lipids on Lipid Transfer Proteins". W Physiology, Biochemistry and Molecular Biology of Plant Lipids, 128–30. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-017-2662-7_41.
Pełny tekst źródłaKader, J. C., F. Guerbette, C. Vergnolle i A. Zachowski. "Lipid Transfer Proteins". W Advanced Research on Plant Lipids, 319–22. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0159-4_74.
Pełny tekst źródłaGrondin, P., C. Vergnolle, L. Chavant i J. C. Kader. "Phospholipid Transfer Proteins from Filamentous Fungi". W Biological Role of Plant Lipids, 379–82. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4684-1303-8_85.
Pełny tekst źródłaWetterau, John R. "Microsomal Triglyceride Transfer Protein". W Intestinal Lipid Metabolism, 171–84. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1195-3_10.
Pełny tekst źródłaBrown, Rhoderick E. "Spontaneous Transfer of Lipids between Membranes". W Subcellular Biochemistry, 333–63. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4899-1621-1_11.
Pełny tekst źródłaLoura, Luís M. S., i Manuel Prieto. "Fluorescence Resonance Energy Transfer to Characterize Cholesterol-Induced Domains". W Methods in Membrane Lipids, 489–501. Totowa, NJ: Humana Press, 2007. http://dx.doi.org/10.1007/978-1-59745-519-0_33.
Pełny tekst źródłaKearns, Melissa A., Min Fang, Marcos Rivas, Brian G. Kearns, Satoshi Kagiwada i Vytas A. Bankaitis. "Phosphatidylinositol Transfer Protein Function in the Yeast saccharomyces Cerevisiae". W Frontiers in Bioactive Lipids, 83–91. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4615-5875-0_12.
Pełny tekst źródłaLadisch, Stephan. "Biological Significance of Tumor Gangliosides: Shedding, Transfer, and Immunosuppression". W Frontiers in Bioactive Lipids, 215–21. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4615-5875-0_28.
Pełny tekst źródłaKader, Jean-Claude, i Pascal Laurent. "Lipid Synthesis and Transfer". W Progress in Plant Cellular and Molecular Biology, 314–23. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-2103-0_48.
Pełny tekst źródłaGounaris, Kleoniki. "Lipid Structures and Lipid-Protein Interactions in Thylakoid Membranes". W Ion Interactions in Energy Transfer Biomembranes, 251–62. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-8410-6_26.
Pełny tekst źródłaStreszczenia konferencji na temat "Transfert de Lipides"
Garbuzneak, Anastasia, Maxim Byrsa i Svetlana Burtseva. "Streptomyces fradiae CNMN-Ac-11 after storage by subculturing and cultivation on complex media". W 5th International Scientific Conference on Microbial Biotechnology. Institute of Microbiology and Biotechnology, Republic of Moldova, 2022. http://dx.doi.org/10.52757/imb22.19.
Pełny tekst źródłaNakano, Takeo, Taku Ohara i Gota Kikugawa. "Study on Molecular Thermal Energy Transfer in a Lipid Bilayer". W ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference collocated with the ASME 2007 InterPACK Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ht2007-32635.
Pełny tekst źródłaCho, H. Jeremy, Shalabh C. Maroo i Evelyn N. Wang. "Characterization of Lipid Membrane Properties for Tunable Electroporation". W ASME 2012 Third International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/mnhmt2012-75321.
Pełny tekst źródłaNakano, Takeo, Gota Kikugawa i Taku Ohara. "Effect of Alkyl Chain Length on Molecular Heat Transfer Characteristics in Lipid Bilayers". W ASME/JSME 2011 8th Thermal Engineering Joint Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajtec2011-44465.
Pełny tekst źródłaBirch, David J. S., Klaus Suhling, A. S. Holmes, T. Salthammer i Robert E. Imhof. "Fluorescence energy transfer to metal ions in lipid bilayers". W OE/LASE '92, redaktor Joseph R. Lakowicz. SPIE, 1992. http://dx.doi.org/10.1117/12.58267.
Pełny tekst źródłaBanneyake, B. M. R. U., i Debjyoti Banerjee. "Microfluidic Device for Synthesis of Lipid Bi-Layers". W ASME 2008 Fluids Engineering Division Summer Meeting collocated with the Heat Transfer, Energy Sustainability, and 3rd Energy Nanotechnology Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/fedsm2008-55219.
Pełny tekst źródłaTherrien, Marie, Michel Lafleur i Michel Pezolet. "On The Water Subtraction In The Fourier Transform Infrared (FTIR) Spectra Of Proteins And Lipids". W 1985 International Conference on Fourier and Computerized Infrared Spectroscopy, redaktorzy David G. Cameron i Jeannette G. Grasselli. SPIE, 1985. http://dx.doi.org/10.1117/12.970757.
Pełny tekst źródłaWorcester, David L., Helmut Kaiser, R. Kulasekere i J. Torbet. "Phase determination using transform and contrast-variation methods in neutron diffraction studies of biological lipids". W San Diego '92, redaktor Michael A. Fiddy. SPIE, 1992. http://dx.doi.org/10.1117/12.139040.
Pełny tekst źródłaHobbs, Raymond, i Xiaolei Sun. "Integrated Wind, Sun, Fossil, Biomass and Nuclear for Energy Sustainability". W ASME 2009 3rd International Conference on Energy Sustainability collocated with the Heat Transfer and InterPACK09 Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/es2009-90129.
Pełny tekst źródłaGreenhall, Margaret H., Jack Yarwood i Ronald M. Swart. "Fourier transform infrared spectroscopic studies of the orientational order and transport of water in lipid Langmuir-Blodgett films". W Fourier Transform Spectroscopy: Ninth International Conference, redaktorzy John E. Bertie i Hal Wieser. SPIE, 1994. http://dx.doi.org/10.1117/12.166614.
Pełny tekst źródłaRaporty organizacyjne na temat "Transfert de Lipides"
Montville, Thomas J., i Roni Shapira. Molecular Engineering of Pediocin A to Establish Structure/Function Relationships for Mechanistic Control of Foodborne Pathogens. United States Department of Agriculture, sierpień 1993. http://dx.doi.org/10.32747/1993.7568088.bard.
Pełny tekst źródłaPorat, Ron, Gregory T. McCollum, Amnon Lers i Charles L. Guy. Identification and characterization of genes involved in the acquisition of chilling tolerance in citrus fruit. United States Department of Agriculture, grudzień 2007. http://dx.doi.org/10.32747/2007.7587727.bard.
Pełny tekst źródła