Artykuły w czasopismach na temat „Transcription factors”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Transcription factors.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Transcription factors”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Wilson, Nicola K., Fernando J. Calero-Nieto, Rita Ferreira i Berthold Göttgens. "Transcriptional regulation of haematopoietic transcription factors". Stem Cell Research & Therapy 2, nr 1 (2011): 6. http://dx.doi.org/10.1186/scrt47.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

BARNES, P. J., i I. M. ADCOCK. "Transcription factors". Clinical Experimental Allergy 25, s2 (listopad 1995): 46–49. http://dx.doi.org/10.1111/j.1365-2222.1995.tb00421.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Hawkins, R. "Transcription Factors". Journal of Medical Genetics 33, nr 12 (1.12.1996): 1054. http://dx.doi.org/10.1136/jmg.33.12.1054-a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Papavassiliou, Athanasios G. "Transcription Factors". New England Journal of Medicine 332, nr 1 (5.01.1995): 45–47. http://dx.doi.org/10.1056/nejm199501053320108.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Locker, J. "Transcription Factors". Biomedicine & Pharmacotherapy 52, nr 1 (styczeń 1998): 47. http://dx.doi.org/10.1016/s0753-3322(97)86247-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Locker., J. "Transcription Factors". Journal of Steroid Biochemistry and Molecular Biology 64, nr 5-6 (marzec 1998): 316. http://dx.doi.org/10.1016/s0960-0760(96)00245-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Handel, Malcolm L., i Laila Girgis. "Transcription factors". Best Practice & Research Clinical Rheumatology 15, nr 5 (grudzień 2001): 657–75. http://dx.doi.org/10.1053/berh.2001.0186.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Parker, C. S. "Transcription factors". Current Opinion in Cell Biology 1, nr 3 (czerwiec 1989): 512–18. http://dx.doi.org/10.1016/0955-0674(89)90013-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Geng, Yanbiao, Peter Laslo, Kevin Barton i Chyung-Ru Wang. "Transcriptional Regulation ofCD1D1by Ets Family Transcription Factors". Journal of Immunology 175, nr 2 (7.07.2005): 1022–29. http://dx.doi.org/10.4049/jimmunol.175.2.1022.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Senecal, Adrien, Brian Munsky, Florence Proux, Nathalie Ly, Floriane E. Braye, Christophe Zimmer, Florian Mueller i Xavier Darzacq. "Transcription Factors Modulate c-Fos Transcriptional Bursts". Cell Reports 8, nr 1 (lipiec 2014): 75–83. http://dx.doi.org/10.1016/j.celrep.2014.05.053.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Zhang, Yuli, i Linlin Hou. "Alternate Roles of Sox Transcription Factors beyond Transcription Initiation". International Journal of Molecular Sciences 22, nr 11 (31.05.2021): 5949. http://dx.doi.org/10.3390/ijms22115949.

Pełny tekst źródła
Streszczenie:
Sox proteins are known as crucial transcription factors for many developmental processes and for a wide range of common diseases. They were believed to specifically bind and bend DNA with other transcription factors and elicit transcriptional activation or repression activities in the early stage of transcription. However, their functions are not limited to transcription initiation. It has been showed that Sox proteins are involved in the regulation of alternative splicing regulatory networks and translational control. In this review, we discuss the current knowledge on how Sox transcription factors such as Sox2, Sry, Sox6, and Sox9 allow the coordination of co-transcriptional splicing and also the mechanism of SOX4-mediated translational control in the context of RNA polymerase III.
Style APA, Harvard, Vancouver, ISO itp.
12

Bloor, Adrian, Ekaterina Kotsopoulou, Penny Hayward, Brian Champion i Anthony Green. "RFP represses transcriptional activation by bHLH transcription factors". Oncogene 24, nr 45 (27.06.2005): 6729–36. http://dx.doi.org/10.1038/sj.onc.1208828.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Zhang, Lang, Haoyue Yu, Pan Wang, Qingyang Ding i Zhao Wang. "Screening of transcription factors with transcriptional initiation activity". Gene 531, nr 1 (listopad 2013): 64–70. http://dx.doi.org/10.1016/j.gene.2013.07.054.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Thiel, Gerald, Lisbeth A. Guethlein i Oliver G. Rössler. "Insulin-Responsive Transcription Factors". Biomolecules 11, nr 12 (15.12.2021): 1886. http://dx.doi.org/10.3390/biom11121886.

Pełny tekst źródła
Streszczenie:
The hormone insulin executes its function via binding and activating of the insulin receptor, a receptor tyrosine kinase that is mainly expressed in skeletal muscle, adipocytes, liver, pancreatic β-cells, and in some areas of the central nervous system. Stimulation of the insulin receptor activates intracellular signaling cascades involving the enzymes extracellular signal-regulated protein kinase-1/2 (ERK1/2), phosphatidylinositol 3-kinase, protein kinase B/Akt, and phospholipase Cγ as signal transducers. Insulin receptor stimulation is correlated with multiple physiological and biochemical functions, including glucose transport, glucose homeostasis, food intake, proliferation, glycolysis, and lipogenesis. This review article focuses on the activation of gene transcription as a result of insulin receptor stimulation. Signal transducers such as protein kinases or the GLUT4-induced influx of glucose connect insulin receptor stimulation with transcription. We discuss insulin-responsive transcription factors that respond to insulin receptor activation and generate a transcriptional network executing the metabolic functions of insulin. Importantly, insulin receptor stimulation induces transcription of genes encoding essential enzymes of glycolysis and lipogenesis and inhibits genes encoding essential enzymes of gluconeogenesis. Overall, the activation or inhibition of insulin-responsive transcription factors is an essential aspect of orchestrating a wide range of insulin-induced changes in the biochemistry and physiology of insulin-responsive tissues.
Style APA, Harvard, Vancouver, ISO itp.
15

Bakshi, Madhunita, i Ralf Oelmüller. "WRKY transcription factors". Plant Signaling & Behavior 9, nr 2 (luty 2014): e27700. http://dx.doi.org/10.4161/psb.27700.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Massague, J. "Smad transcription factors". Genes & Development 19, nr 23 (1.12.2005): 2783–810. http://dx.doi.org/10.1101/gad.1350705.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Steinke, John, i Larry Borish. "Beyond Transcription Factors". Allergy & Clinical Immunology International - Journal of the World Allergy Organization 16, nr 01 (2004): 20–27. http://dx.doi.org/10.1027/0838-1925.16.1.20.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Engelkamp, Dieter. "Pathological transcription factors". Trends in Genetics 16, nr 5 (maj 2000): 233–34. http://dx.doi.org/10.1016/s0168-9525(99)01963-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Yeh, Jennifer E., Patricia A. Toniolo i David A. Frank. "Targeting transcription factors". Current Opinion in Oncology 25, nr 6 (listopad 2013): 652–58. http://dx.doi.org/10.1097/01.cco.0000432528.88101.1a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Wolffe, A. "Architectural transcription factors". Science 264, nr 5162 (20.05.1994): 1100–1101. http://dx.doi.org/10.1126/science.8178167.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Rushton, Paul J., Imre E. Somssich, Patricia Ringler i Qingxi J. Shen. "WRKY transcription factors". Trends in Plant Science 15, nr 5 (maj 2010): 247–58. http://dx.doi.org/10.1016/j.tplants.2010.02.006.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Warren, Alan J. "Eukaryotic transcription factors". Current Opinion in Structural Biology 12, nr 1 (luty 2002): 107–14. http://dx.doi.org/10.1016/s0959-440x(02)00296-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Tan, Song, i Timothy J. Richmond. "Eukaryotic transcription factors". Current Opinion in Structural Biology 8, nr 1 (luty 1998): 41–48. http://dx.doi.org/10.1016/s0959-440x(98)80008-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Reese, Joseph C. "Basal transcription factors". Current Opinion in Genetics & Development 13, nr 2 (kwiecień 2003): 114–18. http://dx.doi.org/10.1016/s0959-437x(03)00013-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Wolberger, Cynthia. "Combinatorial transcription factors". Current Opinion in Genetics & Development 8, nr 5 (październik 1998): 552–59. http://dx.doi.org/10.1016/s0959-437x(98)80010-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Struhl, Kevin. "Yeast transcription factors". Current Opinion in Cell Biology 5, nr 3 (czerwiec 1993): 513–20. http://dx.doi.org/10.1016/0955-0674(93)90018-l.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Crunkhorn, Sarah. "Targeting transcription factors". Nature Reviews Drug Discovery 18, nr 1 (28.12.2018): 18. http://dx.doi.org/10.1038/nrd.2018.231.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

D'Arcangelo, Gabriel la, i Tom Curran. "Smart transcription factors". Nature 376, nr 6538 (lipiec 1995): 292–93. http://dx.doi.org/10.1038/376292a0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Latchman, D. S. "Eukaryotic transcription factors". Biochemical Journal 270, nr 2 (1.09.1990): 281–89. http://dx.doi.org/10.1042/bj2700281.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Latchman, David S. "Inhibitory transcription factors". International Journal of Biochemistry & Cell Biology 28, nr 9 (wrzesień 1996): 965–74. http://dx.doi.org/10.1016/1357-2725(96)00039-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Carter, Matthew E., i Anne Brunet. "FOXO transcription factors". Current Biology 17, nr 4 (luty 2007): R113—R114. http://dx.doi.org/10.1016/j.cub.2007.01.008.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Polyanovsky, Oleg L., i Alexander G. Stepchenko. "Eukaryotic transcription factors". BioEssays 12, nr 5 (maj 1990): 205–10. http://dx.doi.org/10.1002/bies.950120503.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Yamada, Yasuyuki, i Fumihiko Sato. "Transcription Factors in Alkaloid Engineering". Biomolecules 11, nr 11 (18.11.2021): 1719. http://dx.doi.org/10.3390/biom11111719.

Pełny tekst źródła
Streszczenie:
Plants produce a large variety of low-molecular-weight and specialized secondary compounds. Among them, nitrogen-containing alkaloids are the most biologically active and are often used in the pharmaceutical industry. Although alkaloid chemistry has been intensively investigated, characterization of alkaloid biosynthesis, including biosynthetic enzyme genes and their regulation, especially the transcription factors involved, has been relatively delayed, since only a limited number of plant species produce these specific types of alkaloids in a tissue/cell-specific or developmental-specific manner. Recent advances in molecular biology technologies, such as RNA sequencing, co-expression analysis of transcripts and metabolites, and functional characterization of genes using recombinant technology and cutting-edge technology for metabolite identification, have enabled a more detailed characterization of alkaloid pathways. Thus, transcriptional regulation of alkaloid biosynthesis by transcription factors, such as basic helix–loop–helix (bHLH), APETALA2/ethylene-responsive factor (AP2/ERF), and WRKY, is well elucidated. In addition, jasmonate signaling, an important cue in alkaloid biosynthesis, and its cascade, interaction of transcription factors, and post-transcriptional regulation are also characterized and show cell/tissue-specific or developmental regulation. Furthermore, current sequencing technology provides more information on the genome structure of alkaloid-producing plants with large and complex genomes, for genome-wide characterization. Based on the latest information, we discuss the application of transcription factors in alkaloid engineering.
Style APA, Harvard, Vancouver, ISO itp.
34

WATANABE, A., M. ARAI, N. KOITABASHI, M. YAMAZAKI, K. NIWANO i M. KURABAYASHI. "Mitochondrial transcription factors regulate SERCA2 gene transcription". Journal of Molecular and Cellular Cardiology 41, nr 6 (grudzień 2006): 1049. http://dx.doi.org/10.1016/j.yjmcc.2006.08.046.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Becskei, Attila. "Tuning up Transcription Factors for Therapy". Molecules 25, nr 8 (20.04.2020): 1902. http://dx.doi.org/10.3390/molecules25081902.

Pełny tekst źródła
Streszczenie:
The recent developments in the delivery and design of transcription factors put their therapeutic applications within reach, exemplified by cell replacement, cancer differentiation and T-cell based cancer therapies. The success of such applications depends on the efficacy and precision in the action of transcription factors. The biophysical and genetic characterization of the paradigmatic prokaryotic repressors, LacI and TetR and the designer transcription factors, transcription activator-like effector (TALE) and CRISPR-dCas9 revealed common principles behind their efficacy, which can aid the optimization of transcriptional activators and repressors. Further studies will be required to analyze the linkage between dissociation constants and enzymatic activity, the role of phase separation and squelching in activation and repression and the long-range interaction of transcription factors with epigenetic regulators in the context of the chromosomes. Understanding these mechanisms will help to tailor natural and synthetic transcription factors to the needs of specific applications.
Style APA, Harvard, Vancouver, ISO itp.
36

Chávez, Joselyn, Damien P. Devos i Enrique Merino. "Complementary Tendencies in the Use of Regulatory Elements (Transcription Factors, Sigma Factors, and Riboswitches) in Bacteria and Archaea". Journal of Bacteriology 203, nr 2 (19.10.2020): e00413-20. http://dx.doi.org/10.1128/jb.00413-20.

Pełny tekst źródła
Streszczenie:
ABSTRACTIn prokaryotes, the key players in transcription initiation are sigma factors and transcription factors that bind to DNA to modulate the process, while premature transcription termination at the 5′ end of the genes is regulated by attenuation and, in particular, by attenuation associated with riboswitches. In this study, we describe the distribution of these regulators across phylogenetic groups of bacteria and archaea and find that their abundance not only depends on the genome size, as previously described, but also varies according to the phylogeny of the organism. Furthermore, we observed a tendency for organisms to compensate for the low frequencies of a particular type of regulatory element (i.e., transcription factors) with a high frequency of other types of regulatory elements (i.e., sigma factors). This study provides a comprehensive description of the more abundant COG, KEGG, and Rfam families of transcriptional regulators present in prokaryotic genomes.IMPORTANCE In this study, we analyzed the relationship between the relative frequencies of the primary regulatory elements in bacteria and archaea, namely, transcription factors, sigma factors, and riboswitches. In bacteria, we reveal a compensatory behavior for transcription factors and sigma factors, meaning that in phylogenetic groups in which the relative number of transcription factors was low, we found a tendency for the number of sigma factors to be high and vice versa. For most of the phylogenetic groups analyzed here, except for Firmicutes and Tenericutes, a clear relationship with other mechanisms was not detected for transcriptional riboswitches, suggesting that their low frequency in most genomes does not constitute a significant impact on the global variety of transcriptional regulatory elements in prokaryotic organisms.
Style APA, Harvard, Vancouver, ISO itp.
37

Poulat, Francis. "Non-Coding Genome, Transcription Factors, and Sex Determination". Sexual Development 15, nr 5-6 (2021): 295–307. http://dx.doi.org/10.1159/000519725.

Pełny tekst źródła
Streszczenie:
In vertebrates, gonadal sex determination is the process by which transcription factors drive the choice between the testicular and ovarian identity of undifferentiated somatic progenitors through activation of 2 different transcriptional programs. Studies in animal models suggest that sex determination always involves sex-specific transcription factors that activate or repress sex-specific genes. These transcription factors control their target genes by recognizing their regulatory elements in the non-coding genome and their binding motifs within their DNA sequence. In the last 20 years, the development of genomic approaches that allow identifying all the genomic targets of a transcription factor in eukaryotic cells gave the opportunity to globally understand the function of the nuclear proteins that control complex genetic programs. Here, the major transcription factors involved in male and female vertebrate sex determination and the genomic profiling data of mouse gonads that contributed to deciphering their transcriptional regulation role will be reviewed.
Style APA, Harvard, Vancouver, ISO itp.
38

Gao, T. W., W. W. Zhang, A. P. Song, C. An, J. J. Xin, J. F. Jiang, Z. Y. Guan, F. D. Chen i S. M. Chen. "Phylogenetic and transcriptional analysis of chrysanthemum GRAS transcription factors". Biologia Plantarum 62, nr 4 (27.06.2018): 711–20. http://dx.doi.org/10.1007/s10535-018-0816-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Fox, Rebecca M., i Deborah J. Andrew. "Transcriptional regulation of secretory capacity by bZip transcription factors". Frontiers in Biology 10, nr 1 (17.11.2014): 28–51. http://dx.doi.org/10.1007/s11515-014-1338-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Cai, Bin, Cheng-Hui Li, Ai-Sheng Xiong, Ri-He Peng, Jun Zhou, Feng Gao, Zhen Zhang i Quan-Hong Yao. "DGTF: A Database of Grape Transcription Factors". Journal of the American Society for Horticultural Science 133, nr 3 (maj 2008): 459–61. http://dx.doi.org/10.21273/jashs.133.3.459.

Pełny tekst źródła
Streszczenie:
The database of grape transcription factors (DGTF) is a plant transcription factor (TF) database comprehensively collecting and annotating grape (Vitis L.) TF. The DGTF contains 1423 putative grape TF in 57 families. These TF were identified from the predicted wine grape (Vitis vinifera L.) proteins from the grape genome sequencing project by means of a domain search. The DGTF provides detailed annotations for individual members of each TF family, including sequence feature, domain architecture, expression information, and orthologs in other plants. Cross-links to other public databases make its annotations more extensive. In addition, some other transcriptional regulators were also included in the DGTF. It contains 202 transcriptional regulators in 10 families.
Style APA, Harvard, Vancouver, ISO itp.
41

Granadino, B., C. Perez-Sanchez i J. Rey-Campos. "Fork Head Transcription Factors". Current Genomics 1, nr 4 (1.12.2000): 353–82. http://dx.doi.org/10.2174/1389202003351319.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

IMAGAWA, Masayoshi. "Transcription Factors in Eukaryotes." Seibutsu Butsuri 33, nr 3 (1993): 154–58. http://dx.doi.org/10.2142/biophys.33.154.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Wilanowski, Tomasz, i Sebastian Dworkin. "Transcription Factors in Cancer". International Journal of Molecular Sciences 23, nr 8 (18.04.2022): 4434. http://dx.doi.org/10.3390/ijms23084434.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Rusk, Nicole. "Transcription factors without footprints". Nature Methods 11, nr 10 (29.09.2014): 988–89. http://dx.doi.org/10.1038/nmeth.3128.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Williams, Ruth. "Imaging individual transcription factors". Journal of Cell Biology 177, nr 6 (4.06.2007): 946a. http://dx.doi.org/10.1083/jcb.1776rr1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Huang, H., i D. J. Tindall. "Dynamic FoxO transcription factors". Journal of Cell Science 120, nr 15 (17.07.2007): 2479–87. http://dx.doi.org/10.1242/jcs.001222.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

KAMBE, FUKUSHI, i HISAO SEO. "Thyroid-Specific Transcription Factors." Endocrine Journal 44, nr 6 (1997): 775–84. http://dx.doi.org/10.1507/endocrj.44.775.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Shelest, Ekaterina. "Transcription factors in fungi". FEMS Microbiology Letters 286, nr 2 (wrzesień 2008): 145–51. http://dx.doi.org/10.1111/j.1574-6968.2008.01293.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Převorovský, Martin, František Půta i Petr Folk. "Fungal CSL transcription factors". BMC Genomics 8, nr 1 (2007): 233. http://dx.doi.org/10.1186/1471-2164-8-233.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Tomanek, L. "TILAPIA'S HYPEROSMOTIC TRANSCRIPTION FACTORS". Journal of Experimental Biology 208, nr 8 (15.04.2005): vii. http://dx.doi.org/10.1242/jeb.01540.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii