Artykuły w czasopismach na temat „Transcription coupled repair factors (TCR)”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Transcription coupled repair factors (TCR)”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Guirouilh-Barbat, Josée, Christophe Redon i Yves Pommier. "Transcription-coupled DNA Double-Strand Breaks Are Mediated via the Nucleotide Excision Repair and the Mre11-Rad50-Nbs1 Complex". Molecular Biology of the Cell 19, nr 9 (wrzesień 2008): 3969–81. http://dx.doi.org/10.1091/mbc.e08-02-0215.
Pełny tekst źródłaLi, Shisheng, Baojin Ding, Runqiang Chen, Christine Ruggiero i Xuefeng Chen. "Evidence that the Transcription Elongation Function of Rpb9 Is Involved in Transcription-Coupled DNA Repair in Saccharomyces cerevisiae". Molecular and Cellular Biology 26, nr 24 (9.10.2006): 9430–41. http://dx.doi.org/10.1128/mcb.01656-06.
Pełny tekst źródłaBucheli, Miriam, Lori Lommel i Kevin Sweder. "The Defect in Transcription-Coupled Repair Displayed by a Saccharomyces cerevisiae rad26 Mutant Is Dependent on Carbon Source and Is Not Associated With a Lack of Transcription". Genetics 158, nr 3 (1.07.2001): 989–97. http://dx.doi.org/10.1093/genetics/158.3.989.
Pełny tekst źródłaDesai, Shyamal D., Hui Zhang, Alexandra Rodriguez-Bauman, Jin-Ming Yang, Xiaohua Wu, Murugesan K. Gounder, Eric H. Rubin i Leroy F. Liu. "Transcription-Dependent Degradation of Topoisomerase I-DNA Covalent Complexes". Molecular and Cellular Biology 23, nr 7 (1.04.2003): 2341–50. http://dx.doi.org/10.1128/mcb.23.7.2341-2350.2003.
Pełny tekst źródłaAtanassov, Boyko, Aneliya Velkova, Emil Mladenov, Boyka Anachkova i George Russev. "Comparison of the Global Genomic and Transcription-Coupled Repair Rates of Different Lesions in Human Cells". Zeitschrift für Naturforschung C 59, nr 5-6 (1.06.2004): 445–53. http://dx.doi.org/10.1515/znc-2004-5-628.
Pełny tekst źródłaNouspikel, Thierry P., Nevila Hyka-Nouspikel i Philip C. Hanawalt. "Transcription Domain-Associated Repair in Human Cells". Molecular and Cellular Biology 26, nr 23 (2.10.2006): 8722–30. http://dx.doi.org/10.1128/mcb.01263-06.
Pełny tekst źródłavan den Boom, Vincent, Elisabetta Citterio, Deborah Hoogstraten, Angelika Zotter, Jean-Marc Egly, Wiggert A. van Cappellen, Jan H. J. Hoeijmakers, Adriaan B. Houtsmuller i Wim Vermeulen. "DNA damage stabilizes interaction of CSB with the transcription elongation machinery". Journal of Cell Biology 166, nr 1 (28.06.2004): 27–36. http://dx.doi.org/10.1083/jcb.200401056.
Pełny tekst źródłaD'Errico, Mariarosaria, Massimo Teson, Angelo Calcagnile, Tiziana Nardo, Naomi De Luca, Chiara Lazzari, Silvia Soddu, Giovanna Zambruno, Miria Stefanini i Eugenia Dogliotti. "Differential Role of Transcription-Coupled Repair in UVB–Induced Response of Human Fibroblasts and Keratinocytes". Cancer Research 65, nr 2 (15.01.2005): 432–38. http://dx.doi.org/10.1158/0008-5472.432.65.2.
Pełny tekst źródłaMaddukuri, Leena, Dominika Dudzińska i Barbara Tudek. "Bacterial DNA repair genes and their eukaryotic homologues: 4. The role of nucleotide excision DNA repair (NER) system in mammalian cells." Acta Biochimica Polonica 54, nr 3 (23.09.2007): 469–82. http://dx.doi.org/10.18388/abp.2007_3222.
Pełny tekst źródłaChen, Xuefeng, Christine Ruggiero i Shisheng Li. "Yeast Rpb9 Plays an Important Role in Ubiquitylation and Degradation of Rpb1 in Response to UV-Induced DNA Damage". Molecular and Cellular Biology 27, nr 13 (23.04.2007): 4617–25. http://dx.doi.org/10.1128/mcb.00404-07.
Pełny tekst źródłaGuintini, Laetitia, Audrey Paillé, Marco Graf, Brian Luke, Raymund J. Wellinger i Antonio Conconi. "Transcription of ncRNAs promotes repair of UV induced DNA lesions in Saccharomyces cerevisiae subtelomeres". PLOS Genetics 18, nr 4 (29.04.2022): e1010167. http://dx.doi.org/10.1371/journal.pgen.1010167.
Pełny tekst źródłaLiu, Lili, i Andrew J. Rainbow. "Pre-UV-Treatment of Cells Results in Enhanced Host Cell Reactivation of a UV Damaged Reporter Gene in CHO-AA8 Chinese Hamster Ovary Cells but Not in Transcription-Coupled Repair Deficient CHO-UV61 Cells". Bioscience Reports 24, nr 6 (1.12.2004): 559–76. http://dx.doi.org/10.1007/s10540-005-2792-x.
Pełny tekst źródłaFei, Jia, i Junjie Chen. "KIAA1530 Protein Is Recruited by Cockayne Syndrome Complementation Group Protein A (CSA) to Participate in Transcription-coupled Repair (TCR)". Journal of Biological Chemistry 287, nr 42 (17.08.2012): 35118–26. http://dx.doi.org/10.1074/jbc.m112.398131.
Pełny tekst źródłaSweder, Kevin S., Richard A. Verhage, David J. Crowley, Gray F. Crouse, Jaap Brouwer i Philip C. Hanawalt. "Mismatch Repair Mutants in Yeast Are Not Defective in Transcription-Coupled DNA Repair of UV-Induced DNA Damage". Genetics 143, nr 3 (1.07.1996): 1127–35. http://dx.doi.org/10.1093/genetics/143.3.1127.
Pełny tekst źródłaKraithong, Thanyalak, Silas Hartley, David Jeruzalmi i Danaya Pakotiprapha. "A Peek Inside the Machines of Bacterial Nucleotide Excision Repair". International Journal of Molecular Sciences 22, nr 2 (19.01.2021): 952. http://dx.doi.org/10.3390/ijms22020952.
Pełny tekst źródłaVerhage, R. A., A. J. van Gool, N. de Groot, J. H. Hoeijmakers, P. van de Putte i J. Brouwer. "Double mutants of Saccharomyces cerevisiae with alterations in global genome and transcription-coupled repair." Molecular and Cellular Biology 16, nr 2 (luty 1996): 496–502. http://dx.doi.org/10.1128/mcb.16.2.496.
Pełny tekst źródłade Waard, Harm, Jan de Wit, Jaan-Olle Andressoo, Conny T. M. van Oostrom, Bente Riis, Allan Weimann, Henrik E. Poulsen, Harry van Steeg, Jan H. J. Hoeijmakers i Gijsbertus T. J. van der Horst. "Different Effects of CSA and CSB Deficiency on Sensitivity to Oxidative DNA Damage". Molecular and Cellular Biology 24, nr 18 (15.09.2004): 7941–48. http://dx.doi.org/10.1128/mcb.24.18.7941-7948.2004.
Pełny tekst źródłaCitterio, Elisabetta, Vincent Van Den Boom, Gavin Schnitzler, Roland Kanaar, Edgar Bonte, Robert E. Kingston, Jan H. J. Hoeijmakers i Wim Vermeulen. "ATP-Dependent Chromatin Remodeling by the Cockayne Syndrome B DNA Repair-Transcription-Coupling Factor". Molecular and Cellular Biology 20, nr 20 (15.10.2000): 7643–53. http://dx.doi.org/10.1128/mcb.20.20.7643-7653.2000.
Pełny tekst źródłaBrosh, Robert M., Adayabalam S. Balajee, Rebecca R. Selzer, Morten Sunesen, Luca Proietti De Santis i Vilhelm A. Bohr. "The ATPase Domain but Not the Acidic Region of Cockayne Syndrome Group B Gene Product Is Essential for DNA Repair". Molecular Biology of the Cell 10, nr 11 (listopad 1999): 3583–94. http://dx.doi.org/10.1091/mbc.10.11.3583.
Pełny tekst źródłaSaijo, Masafumi, Tamami Hirai, Akiko Ogawa, Aki Kobayashi, Shinya Kamiuchi i Kiyoji Tanaka. "Functional TFIIH Is Required for UV-Induced Translocation of CSA to the Nuclear Matrix". Molecular and Cellular Biology 27, nr 7 (22.01.2007): 2538–47. http://dx.doi.org/10.1128/mcb.01288-06.
Pełny tekst źródłaSollier, Julie, Caroline Townsend Stork, María L. García-Rubio, Renee D. Paulsen, Andrés Aguilera i Karlene A. Cimprich. "Transcription-Coupled Nucleotide Excision Repair Factors Promote R-Loop-Induced Genome Instability". Molecular Cell 56, nr 6 (grudzień 2014): 777–85. http://dx.doi.org/10.1016/j.molcel.2014.10.020.
Pełny tekst źródłavan Oosterwijk, M. F., A. Versteeg, R. Filon, A. A. van Zeeland i L. H. Mullenders. "The sensitivity of Cockayne's syndrome cells to DNA-damaging agents is not due to defective transcription-coupled repair of active genes." Molecular and Cellular Biology 16, nr 8 (sierpień 1996): 4436–44. http://dx.doi.org/10.1128/mcb.16.8.4436.
Pełny tekst źródłaRodrigo, Gregory, Sophie Roumagnac, Marc S. Wold, Bernard Salles i Patrick Calsou. "DNA Replication but Not Nucleotide Excision Repair Is Required for UVC-Induced Replication Protein A Phosphorylation in Mammalian Cells". Molecular and Cellular Biology 20, nr 8 (15.04.2000): 2696–705. http://dx.doi.org/10.1128/mcb.20.8.2696-2705.2000.
Pełny tekst źródłaReid-Bayliss, Kate S., Sarah T. Arron, Lawrence A. Loeb, Vladimir Bezrookove i James E. Cleaver. "Why Cockayne syndrome patients do not get cancer despite their DNA repair deficiency". Proceedings of the National Academy of Sciences 113, nr 36 (19.08.2016): 10151–56. http://dx.doi.org/10.1073/pnas.1610020113.
Pełny tekst źródłaGaillard, Hélène, Cristina Tous, Javier Botet, Cristina González-Aguilera, Maria José Quintero, Laia Viladevall, María L. García-Rubio i in. "Genome-Wide Analysis of Factors Affecting Transcription Elongation and DNA Repair: A New Role for PAF and Ccr4-Not in Transcription-Coupled Repair". PLoS Genetics 5, nr 2 (6.02.2009): e1000364. http://dx.doi.org/10.1371/journal.pgen.1000364.
Pełny tekst źródłaLuo, Chong, Hatice Osmanbeyoglu, Christina Leslie i Ming Li. "Essential role of the Ets transcription factor GABP in control of T cell responses to antigen stimulation (IRM15P.454)". Journal of Immunology 194, nr 1_Supplement (1.05.2015): 199.2. http://dx.doi.org/10.4049/jimmunol.194.supp.199.2.
Pełny tekst źródłaGomez-Rodriguez, Julio, Nisebita Sahu, Robin Handon, Maria Sacta, Stacie Anderson, Martha Kirby, Avery August i Pamela Schwartzberg. "Differential expression of IL-17A and IL-17F is coupled to TCR signaling via Itk-mediated regulation of NFATc1 (139.4)". Journal of Immunology 184, nr 1_Supplement (1.04.2010): 139.4. http://dx.doi.org/10.4049/jimmunol.184.supp.139.4.
Pełny tekst źródłaSmith, Martin L., James M. Ford, M. Christine Hollander, Rachel A. Bortnick, Sally A. Amundson, Young R. Seo, Chu-Xia Deng, Philip C. Hanawalt i Albert J. Fornace. "p53-Mediated DNA Repair Responses to UV Radiation: Studies of Mouse Cells Lacking p53, p21, and/orgadd45 Genes". Molecular and Cellular Biology 20, nr 10 (15.05.2000): 3705–14. http://dx.doi.org/10.1128/mcb.20.10.3705-3714.2000.
Pełny tekst źródłaShin, Samuel B., Bernard C. Lo, Maryam Ghaedi, R. Wilder Scott, Yicong Li, Melina Messing, Diana Canals Hernaez i in. "Abortive γδTCR rearrangements suggest ILC2s are derived from T-cell precursors". Blood Advances 4, nr 21 (2.11.2020): 5362–72. http://dx.doi.org/10.1182/bloodadvances.2020002758.
Pełny tekst źródłaDuan, Mingrui, Kathiresan Selvam, John J. Wyrick i Peng Mao. "Genome-wide role of Rad26 in promoting transcription-coupled nucleotide excision repair in yeast chromatin". Proceedings of the National Academy of Sciences 117, nr 31 (20.07.2020): 18608–16. http://dx.doi.org/10.1073/pnas.2003868117.
Pełny tekst źródłaMenoni, Hervé, Jan H. J. Hoeijmakers i Wim Vermeulen. "Nucleotide excision repair–initiating proteins bind to oxidative DNA lesions in vivo". Journal of Cell Biology 199, nr 7 (17.12.2012): 1037–46. http://dx.doi.org/10.1083/jcb.201205149.
Pełny tekst źródłaWu, J., S. Katzav i A. Weiss. "A functional T-cell receptor signaling pathway is required for p95vav activity." Molecular and Cellular Biology 15, nr 8 (sierpień 1995): 4337–46. http://dx.doi.org/10.1128/mcb.15.8.4337.
Pełny tekst źródłaZhang, Yaguang, Qin Zhang, Yang Zhang i Junhong Han. "The Role of Histone Modification in DNA Replication-Coupled Nucleosome Assembly and Cancer". International Journal of Molecular Sciences 24, nr 5 (3.03.2023): 4939. http://dx.doi.org/10.3390/ijms24054939.
Pełny tekst źródłaHu, Jinchuan, Jun-Hyuk Choi, Shobhan Gaddameedhi, Michael G. Kemp, Joyce T. Reardon i Aziz Sancar. "Nucleotide Excision Repair in Human Cells". Journal of Biological Chemistry 288, nr 29 (8.06.2013): 20918–26. http://dx.doi.org/10.1074/jbc.m113.482257.
Pełny tekst źródłaAgapov, Aleksei, Anna Olina i Andrey Kulbachinskiy. "RNA polymerase pausing, stalling and bypass during transcription of damaged DNA: from molecular basis to functional consequences". Nucleic Acids Research 50, nr 6 (22.03.2022): 3018–41. http://dx.doi.org/10.1093/nar/gkac174.
Pełny tekst źródłaMartinez, Ernest, Vikas B. Palhan, Agneta Tjernberg, Elena S. Lymar, Armin M. Gamper, Tapas K. Kundu, Brian T. Chait i Robert G. Roeder. "Human STAGA Complex Is a Chromatin-Acetylating Transcription Coactivator That Interacts with Pre-mRNA Splicing and DNA Damage-Binding Factors In Vivo". Molecular and Cellular Biology 21, nr 20 (15.10.2001): 6782–95. http://dx.doi.org/10.1128/mcb.21.20.6782-6795.2001.
Pełny tekst źródłaXu, Jun, Wei Wang, Liang Xu, Jia-Yu Chen, Jenny Chong, Juntaek Oh, Andres E. Leschziner, Xiang-Dong Fu i Dong Wang. "Cockayne syndrome B protein acts as an ATP-dependent processivity factor that helps RNA polymerase II overcome nucleosome barriers". Proceedings of the National Academy of Sciences 117, nr 41 (28.09.2020): 25486–93. http://dx.doi.org/10.1073/pnas.2013379117.
Pełny tekst źródłaPackard, Jessica E., i Jill A. Dembowski. "HSV-1 DNA Replication—Coordinated Regulation by Viral and Cellular Factors". Viruses 13, nr 10 (7.10.2021): 2015. http://dx.doi.org/10.3390/v13102015.
Pełny tekst źródłaXu, Jun, Jenny Chong i Dong Wang. "Strand-specific effect of Rad26 and TFIIS in rescuing transcriptional arrest by CAG trinucleotide repeat slip-outs". Nucleic Acids Research 49, nr 13 (1.07.2021): 7618–27. http://dx.doi.org/10.1093/nar/gkab573.
Pełny tekst źródłaMorel, Penelope A., William F. Hawse, Robert P. Sheehan, William C. Boggess i James R. Faeder. "TCR signal strength regulates Akt substrate specificity to induce alternate Th and Treg differentiation programs". Journal of Immunology 196, nr 1_Supplement (1.05.2016): 128.10. http://dx.doi.org/10.4049/jimmunol.196.supp.128.10.
Pełny tekst źródłaYedidia-Aryeh, Lia, i Michal Goldberg. "The Interplay between the Cellular Response to DNA Double-Strand Breaks and Estrogen". Cells 11, nr 19 (1.10.2022): 3097. http://dx.doi.org/10.3390/cells11193097.
Pełny tekst źródłaLiu, Haoxuan, i Jianzhi Zhang. "Higher Germline Mutagenesis of Genes with Stronger Testis Expressions Refutes the Transcriptional Scanning Hypothesis". Molecular Biology and Evolution 37, nr 11 (8.07.2020): 3225–31. http://dx.doi.org/10.1093/molbev/msaa168.
Pełny tekst źródłaMoriel-Carretero, María, Sara Ovejero, Marie Gérus-Durand, Dimos Vryzas i Angelos Constantinou. "Fanconi anemia FANCD2 and FANCI proteins regulate the nuclear dynamics of splicing factors". Journal of Cell Biology 216, nr 12 (13.10.2017): 4007–26. http://dx.doi.org/10.1083/jcb.201702136.
Pełny tekst źródłaZisa, David, Arsalan Shabbir, Michalis Mastri, Tyler Taylor, Ilija Aleksic, Mary McDaniel, Gen Suzuki i Techung Lee. "Intramuscular VEGF activates an SDF1-dependent progenitor cell cascade and an SDF1-independent muscle paracrine cascade for cardiac repair". American Journal of Physiology-Heart and Circulatory Physiology 301, nr 6 (grudzień 2011): H2422—H2432. http://dx.doi.org/10.1152/ajpheart.00343.2011.
Pełny tekst źródłaOnabote, Oladapo, Haider M. Hassan, Majdina Isovic i Joseph Torchia. "The Role of Thymine DNA Glycosylase in Transcription, Active DNA Demethylation, and Cancer". Cancers 14, nr 3 (1.02.2022): 765. http://dx.doi.org/10.3390/cancers14030765.
Pełny tekst źródłaYang, Lili, Adam W. Mailloux, Dana E. Rollison, Jong Park, Jeffrey S. Painter, Rami S. Komrokji, Jaroslaw P. Maciejewski i in. "Human Telomerase Reverse Transcriptase (hTERT) Deficiency in Myelodysplastic Syndrome (MDS) Demonstrates Mechanistic Linkage to Aplastic Anemia Pathophysiology". Blood 118, nr 21 (18.11.2011): 791. http://dx.doi.org/10.1182/blood.v118.21.791.791.
Pełny tekst źródłaDammann, R., i G. P. Pfeifer. "Lack of gene- and strand-specific DNA repair in RNA polymerase III-transcribed human tRNA genes." Molecular and Cellular Biology 17, nr 1 (styczeń 1997): 219–29. http://dx.doi.org/10.1128/mcb.17.1.219.
Pełny tekst źródłaDebnath, Sandip, Achal Kant, Pradipta Bhowmick, Ayushman Malakar, Shampa Purkaystha, Binod Kumar Jena, Gaurav Mudgal i in. "The Enhanced Affinity of WRKY Reinforces Drought Tolerance in Solanum lycopersicum L.: An Innovative Bioinformatics Study". Plants 12, nr 4 (8.02.2023): 762. http://dx.doi.org/10.3390/plants12040762.
Pełny tekst źródłaRubtsov, Yury, Кirill Goryunov, Аndrey Romanov, Yulia Suzdaltseva, George Sharonov i Vsevolod Tkachuk. "Molecular Mechanisms of Immunomodulation Properties of Mesenchymal Stromal Cells: A New Insight into the Role of ICAM-1". Stem Cells International 2017 (2017): 1–15. http://dx.doi.org/10.1155/2017/6516854.
Pełny tekst źródłaAkhter, Md Zahid, Jagdish Chandra Joshi, Vijay Avin Balaji Ragunathrao, Mark Maienschein-Cline, Richard L. Proia, Asrar B. Malik i Dolly Mehta. "Programming to S1PR1 + Endothelial Cells Promotes Restoration of Vascular Integrity". Circulation Research 129, nr 2 (9.07.2021): 221–36. http://dx.doi.org/10.1161/circresaha.120.318412.
Pełny tekst źródła