Gotowa bibliografia na temat „Traffic flow - Urban areas”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Traffic flow - Urban areas”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Traffic flow - Urban areas"
Pradhan, R. K., S. Shrestha i D. B. Gurung. "Mathematical modeling of mixed-traffic in urban areas". Mathematical Modeling and Computing 9, nr 2 (2022): 226–40. http://dx.doi.org/10.23939/mmc2022.02.226.
Pełny tekst źródłaLiao, Zhuhua, Haokai Huang, Yijiang Zhao, Yizhi Liu i Guoqiang Zhang. "Analysis and Forecast of Traffic Flow between Urban Functional Areas Based on Ride-Hailing Trajectories". ISPRS International Journal of Geo-Information 12, nr 4 (28.03.2023): 144. http://dx.doi.org/10.3390/ijgi12040144.
Pełny tekst źródłaDong, Yu Bo. "Discussion on Urban Road Traffic Congestion Algorithm for Automatically Determining". Advanced Materials Research 926-930 (maj 2014): 3790–93. http://dx.doi.org/10.4028/www.scientific.net/amr.926-930.3790.
Pełny tekst źródłaNemtanu, Florin, Ilona Madalina Costea i Catalin Dumitrescu. "Spectral Analysis of Traffic Functions in Urban Areas". PROMET - Traffic&Transportation 27, nr 6 (17.12.2015): 477–84. http://dx.doi.org/10.7307/ptt.v27i6.1686.
Pełny tekst źródłaQin, Jiayu, Gang Mei i Lei Xiao. "Building the Traffic Flow Network with Taxi GPS Trajectories and Its Application to Identify Urban Congestion Areas for Traffic Planning". Sustainability 13, nr 1 (30.12.2020): 266. http://dx.doi.org/10.3390/su13010266.
Pełny tekst źródłaStriewski, Sören, Ingo Thomsen i Sven Tomforde. "Adaptive Approaches for Tidal-Flow Lanes in Urban-Road Networks". Future Transportation 2, nr 3 (27.06.2022): 567–88. http://dx.doi.org/10.3390/futuretransp2030031.
Pełny tekst źródłaZambrano-Martinez, Jorge, Carlos Calafate, David Soler, Lenin-Guillermo Lemus-Zúñiga, Juan-Carlos Cano, Pietro Manzoni i Thierry Gayraud. "A Centralized Route-Management Solution for Autonomous Vehicles in Urban Areas". Electronics 8, nr 7 (26.06.2019): 722. http://dx.doi.org/10.3390/electronics8070722.
Pełny tekst źródłaHuang, Zhufei, Zihan Zhang, Haijian Li, Lingqiao Qin i Jian Rong. "Determining Appropriate Lane-Changing Spacing for Off-Ramp Areas of Urban Expressways". Sustainability 11, nr 7 (8.04.2019): 2087. http://dx.doi.org/10.3390/su11072087.
Pełny tekst źródłaKuang, Weiming, Shi An i Huifu Jiang. "Detecting Traffic Anomalies in Urban Areas Using Taxi GPS Data". Mathematical Problems in Engineering 2015 (2015): 1–13. http://dx.doi.org/10.1155/2015/809582.
Pełny tekst źródłaJ, Cynthia, G. Sakthi Priya, C. Kevin Samuel, Suguna M, Senthil J i S. Abraham Jebaraj. "Traffic Flow Forecasting Using Machine Learning Techniques". Webology 18, nr 04 (28.09.2021): 1512–26. http://dx.doi.org/10.14704/web/v18si04/web18295.
Pełny tekst źródłaRozprawy doktorskie na temat "Traffic flow - Urban areas"
Kothuri, Sirisha Murthy. "Exploring Pedestrian Responsive Traffic Signal Timing Strategies in Urban Areas". PDXScholar, 2014. https://pdxscholar.library.pdx.edu/open_access_etds/1934.
Pełny tekst źródłaAGOSTI, ABRAMO. "MODELS OF TURBULENCE. APPLICATIONS TO PARTICULATE MIXING INDUCED BY TRAFFIC FLOW IN URBAN AREAS". Doctoral thesis, Università degli Studi di Milano, 2013. http://hdl.handle.net/2434/217169.
Pełny tekst źródłaSlavin, Courtney Natasha. "The Relationship Between Traffic Signals and Pedestrian, Bicyclist and Transit User Exposure in Urban Areas". PDXScholar, 2013. https://pdxscholar.library.pdx.edu/open_access_etds/616.
Pełny tekst źródłaMa, Xiaoyi [Verfasser], i Dieter [Akademischer Betreuer] Schramm. "Effects of Vehicles with Different Degrees of Automation on Traffic Flow in Urban Areas / Xiaoyi Ma ; Betreuer: Dieter Schramm". Duisburg, 2021. http://d-nb.info/123032271X/34.
Pełny tekst źródłaAndersson, Lovisa. "An application of Bayesian Hidden Markov Models to explore traffic flow conditions in an urban area". Thesis, Uppsala universitet, Statistiska institutionen, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-385187.
Pełny tekst źródłaMariotte, Guilhem. "Dynamic Modeling of Large-Scale Urban Transportation Systems". Thesis, Lyon, 2018. http://www.theses.fr/2018LYSET010/document.
Pełny tekst źródłaCongestion in urban areas has become a major issue in terms of economic, social or environmental impact. For short or mid term, using dynamic road traffic simulation can help analyzing and providing guidelines to optimization policies of existing infrastructures. Today, because of the complexity of transport systems, classical modeling tools are limited to small geographical areas (of a district size). Computational time, together with simulation calibration, are notably very constraining at large scales. However, a new generation of models designed for metropolitan areas has arisen over the past decades. These models are based on a phenomenological relationship between travel production and the number of vehicles in a given spatial area of a road network, known as the Macroscopic Fundamental Diagram (MFD). This relationship, supported by empirical evidences from several cities around the world, has allowed the study of different traffic control schemes at a whole city scale, but was rarely used for traffic state forecasting. The aim of this PhD is to propose an efficient modeling tool, based upon the concept of MFD, to simulate and analyze traffic states in large metropolitan areas. The theoretical framework of this tool must be consistent and applicable for traffic state forecasting, development of new control policies, traffic emission estimation, etc. There are two major contributions in this PhD. The first one is analyzing the mathematical and physical properties of existing models, and formalizing the dynamics of several trip lengths inside the same urban zone. In particular, this formalization distinguishes between internal trips and trips crossing the zone. Flow merging and diverging issues are also addressed when congestion propagates from one zone to another. The second contribution is proposing a new trip-based model based on individual traveled distance. This approach allows to treat users independently (previously represented with continuous flows), and thus to define their characteristics more precisely to couple their trips with assignment models on different paths. Finally, examples of application from various collaborations are given in the last part of this thesis. It includes a simulation study of the Grand Lyon urban area (France), as well as new modules to simulate search-for-parking or perimeter control. This PhD is part of a European ERC project entitled MAGnUM: Multiscale and Multimodal Traffic Modeling Approach for Sustainable Management of Urban Mobility
Goulart, Elisa Valentim. "Flow and dispersion in urban areas". Thesis, University of Reading, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.578021.
Pełny tekst źródłaGrau, Mariani Rafael. "A demand-responsive traffic control system for urban areas". Doctoral thesis, Universitat Politècnica de Catalunya, 1995. http://hdl.handle.net/10803/399670.
Pełny tekst źródłaEl objetivo de esta tesis es el diseño, desarrollo y test por simulación microscópica de un sistema autoadaptativo apto para cruces aislados, arterias y redes urbanas complejas. El sistema produce planes de control acíclicos y presenta unos requerimientos de tiempo real muy flexibles debidos a utilizar una nueva secuencia cíclica de tareas en la que se predice el estado del sistema a corto término antes de probar planes de control alternativos. Estas pruebas se realizan mediante un modelo interno de simulación que sigue un enfoque mesoscópico a base de paquetes de vehículos de velocidad variable, con el que se consigue modelizar la dinámica de colas de vehículos de forma más exacta que con los sistemas actualmente existentes. Esto da una ventaja, corroborada en los test, en condiciones de flujo altas, con lo que el sistema de controles es capaz de mantener una buena efectividad en un amplio rango de condiciones de tráfico. El sistema viene acompañado de un entorno de simulación y test que aporta un alto grado de integración y de facilidad de uso, a lo largo de todo el proceso de especificación de geometría, parámetros y ejecución de simulación se mantiene una vista de la red de tráfico altamente realista.
Bostock, Adam K. "Prediction and reduction of traffic pollution in urban areas". Thesis, University of Nottingham, 1994. http://eprints.nottingham.ac.uk/14352/.
Pełny tekst źródłaDi, Sabatino Silvana. "Flow and pollutant dispersion in urban areas". Thesis, University of Cambridge, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.615192.
Pełny tekst źródłaKsiążki na temat "Traffic flow - Urban areas"
Hanks, James W. Roadway congestion in major urban areas, 1982 to 1987. College Station, Tex: Texas Transportation Institute, the Texas A&M University System, 1989.
Znajdź pełny tekst źródłaVahl, H. G. Traffic calming through integrated urban planning. Paris: Amarcande, 1990.
Znajdź pełny tekst źródłaEngineers, Institute of Transportation. Designing walkable urban thoroughfares: A context sensitive approach. Washington, DC: Institute of Transportation Engineers, 2010.
Znajdź pełny tekst źródłaInstitution of Highways and Transportation (Great Britain) i Great Britain. Dept. of Transport., red. Roads and traffic in urban areas. London: HMSO, 1987.
Znajdź pełny tekst źródłaUrban spatial traffic patterns. London: Pion, 1987.
Znajdź pełny tekst źródłaNational Research Council (U.S.). Transportation Research Board., red. Traffic flow, capacity, roadway lighting, and urban traffic systems, 1990. Washington, D.C: Transportation Research Board, National Research Council, 1990.
Znajdź pełny tekst źródłaSchrank, David L. Estimates of urban roadway congestion, 1990. College Station, Tex: Texas Transportation Institute, Texas A&M University System, 1993.
Znajdź pełny tekst źródłaSchrank, David L. Estimates of urban roadway congestion, 1990. Washington, DC: Office of Traffic Management and Intelligent Vehicle Highway Systems, Federal Highway Administration, 1993.
Znajdź pełny tekst źródłaFisk, C. S. Urban road traffic models for economic appraisal. Lambton Quay, Wellington: Transit New Zealand, 1992.
Znajdź pełny tekst źródłaH, Gartner Nathan, Improta Gennaro 1942- i International Seminar on Urban Traffic Networks (2nd : 1992 : Capri, Italy), red. Urban traffic networks: Dynamic flow modeling and control. Berlin: Springer-Verlag, 1995.
Znajdź pełny tekst źródłaCzęści książek na temat "Traffic flow - Urban areas"
Hoch, Thomas, i Theodorich Kopetzky. "Energy-Efficient Internet of Things Solution for Traffic Monitoring". W Energy-Efficient and Semi-automated Truck Platooning, 129–41. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-88682-0_10.
Pełny tekst źródłaCarrese, Stefano, Stefano Gori i Tommaso Picano. "Relationship between Parking Location and Traffic Flows in Urban Areas". W Advanced Methods in Transportation Analysis, 183–214. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-85256-5_9.
Pełny tekst źródłaCarpita, Maurizio, i Rodolfo Metulini. "Modelling the spatio-temporal dynamic of traffic flows with gravity models and mobile phone data". W Proceedings e report, 99–104. Florence: Firenze University Press, 2021. http://dx.doi.org/10.36253/978-88-5518-461-8.19.
Pełny tekst źródłaSingh, Sandeep, R. Vidya, Bishnu Kant Shukla i S. Moses Santhakumar. "Analysis of Traffic Flow Characteristics Based on Area-Occupancy Concept on Urban Arterial Roads Under Heterogeneous Traffic Scenario—A Case Study of Tiruchirappalli City". W Lecture Notes in Civil Engineering, 69–84. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1303-6_6.
Pełny tekst źródłaOprea, Cristina, Mircea Roşca, Şerban Stere i Sergiu Olteanu. "Traffic Modeling in Urban Congested Areas". W Proceedings of the 4th International Congress of Automotive and Transport Engineering (AMMA 2018), 766–74. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94409-8_89.
Pełny tekst źródłaFormato, Enrico. "New Urbanization Phenomena and Potential Landscapes: Rhizomatic Grids and Asymmetrical Clusters". W Regenerative Territories, 135–45. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-78536-9_8.
Pełny tekst źródłaMcDonald, John F., Edmond L. d’Ouville i Louie Nan Liu. "An Engineering Model of Traffic Flow". W Economics of Urban Highway Congestion and Pricing, 9–14. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-5231-4_2.
Pełny tekst źródłaPavlyuk, Dmitry. "Spatiotemporal Forecasting of Urban Traffic Flow Volatility". W Lecture Notes in Networks and Systems, 63–72. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68476-1_6.
Pełny tekst źródłaHinz, Stefan, Steffen Suchandt, Diana Weihing i Franz Kurz. "Traffic Data Collection with TerraSAR-X and Performance Evaluation". W Radar Remote Sensing of Urban Areas, 87–108. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-3751-0_4.
Pełny tekst źródłaMark Doctor, Patrick Hasson, Hillary Isebrands i John McFadden. "Planning, Design, and Operations of Road Segments and Interchanges in Urban Areas". W Traffic Engineering Handbook, 283–320. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2016. http://dx.doi.org/10.1002/9781119174738.ch9.
Pełny tekst źródłaStreszczenia konferencji na temat "Traffic flow - Urban areas"
Wang, Yue, Ming Chen i Aite Zhao. "Spatio-Temporal Correlation Augmented Model for Traffic Flow Prediction in Urban Areas". W ICBDT 2022: 2022 5th International Conference on Big Data Technologies. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3565291.3565299.
Pełny tekst źródłaXing, Enhui, i Rui Wang. "Traffic Flow Characteristics of Urban Expressway in the Period of Ice and Snow of Cold Areas". W Seventh International Conference on Traffic and Transportation Studies (ICTTS) 2010. Reston, VA: American Society of Civil Engineers, 2010. http://dx.doi.org/10.1061/41123(383)41.
Pełny tekst źródłaGonzalo Orden, Hernán. "Traffic calming measures and their effect on the variation of speed". W CIT2016. Congreso de Ingeniería del Transporte. Valencia: Universitat Politècnica València, 2016. http://dx.doi.org/10.4995/cit2016.2016.4217.
Pełny tekst źródłaXess, Shruti, i Dr Akshey Bhargava. "Carrying capacity of Urban Transportation Networks: A case study of designed ideal city". W 7th GoGreen Summit 2021. Technoarete, 2021. http://dx.doi.org/10.36647/978-93-92106-02-6.12.
Pełny tekst źródłaBiliszczuk, Jan, Hanna Onysyk, Marco Teichgraeber i Robert Toczkiewicz. "Solutions to the problem of safe pedestrian traffic flow in cities". W IABSE Congress, New York, New York 2019: The Evolving Metropolis. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2019. http://dx.doi.org/10.2749/newyork.2019.2354.
Pełny tekst źródłaJang, Dae-Sung, Corey A. Ippolito, Shankar Sankararaman i Vahram Stepanyan. "Concepts of Airspace Structures and System Analysis for UAS Traffic flows for Urban Areas". W AIAA Information Systems-AIAA Infotech @ Aerospace. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2017. http://dx.doi.org/10.2514/6.2017-0449.
Pełny tekst źródłaKosovac, Amel, Muharem Šabić, Ermin Muharemović i Edvin Šimić. "Shipment delivery challenges using unmanned aerial vehicles". W INTERNATIONAL CONFERENCE ON ADVANCES IN TRAFFIC AND COMMUNICATION TECHNOLOGIES. University of Sarajevo - Faculty of Traffic and Communications, 2022. http://dx.doi.org/10.59478/atct.2022.22.
Pełny tekst źródłaAttanasi, Alessandro, Lorenzo Meschini, Marco Pezzulla, Gaetano Fusco, Guido Gentile i Natalia Isaenko. "A hybrid method for real-time short-term predictions of traffic flows in urban areas". W 2017 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS). IEEE, 2017. http://dx.doi.org/10.1109/mtits.2017.8005637.
Pełny tekst źródłaKmoniček, Hrvoje, i Filip Ruška. "Changes in traffic infrastructure with the arrival of autonomous vehicles". W 6th International Conference on Road and Rail Infrastructure. University of Zagreb Faculty of Civil Engineering, 2021. http://dx.doi.org/10.5592/co/cetra.2020.1074.
Pełny tekst źródłaOlayode, O. I., L. K. Tartibu i M. O. Okwu. "Application of Adaptive Neuro-Fuzzy Inference System Model on Traffic Flow of Vehicles at a Signalized Road Intersections". W ASME 2021 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/imece2021-70956.
Pełny tekst źródłaRaporty organizacyjne na temat "Traffic flow - Urban areas"
Kothuri, Sirisha. Exploring Pedestrian Responsive Traffic Signal Timing Strategies in Urban Areas. Portland State University Library, styczeń 2000. http://dx.doi.org/10.15760/etd.1933.
Pełny tekst źródłaSlavin, Courtney. The Relationship Between Traffic Signals and Pedestrian, Bicyclist and Transit User Exposure in Urban Areas. Portland State University Library, styczeń 2000. http://dx.doi.org/10.15760/etd.616.
Pełny tekst źródłaKodupuganti, Swapneel R., Sonu Mathew i Srinivas S. Pulugurtha. Modeling Operational Performance of Urban Roads with Heterogeneous Traffic Conditions. Mineta Transportation Institute, styczeń 2021. http://dx.doi.org/10.31979/mti.2021.1802.
Pełny tekst źródłaKumar, Kaushal, i Yupeng Wei. Attention-Based Data Analytic Models for Traffic Flow Predictions. Mineta Transportation Institute, marzec 2023. http://dx.doi.org/10.31979/mti.2023.2211.
Pełny tekst źródłaTran, My-Thu, i Bo Yang. Using Thermal Remote Sensing to Quantify Impact of Traffic on Urban Heat Islands during COVID. Mineta Transportation Institute, kwiecień 2023. http://dx.doi.org/10.31979/mti.2023.2207.
Pełny tekst źródłaLin, Pei-Sung. Coordinated Pre-Preemption of Traffic Signals to Enhance Railroad Grade Crossing Safety in Urban Areas and Estimation of Train Impacts to Arterial Travel Time Delay. Tampa, FL: University of South Florida, styczeń 2004. http://dx.doi.org/10.5038/cutr-nctr-rr-2014-06.
Pełny tekst źródłaSiebke, Christian, Maximilian Bäumler, Madlen Ringhand, Marcus Mai, Felix Elrod i Günther Prokop. Report on integration of the stochastic traffic simulation. Technische Universität Dresden, 2021. http://dx.doi.org/10.26128/2021.246.
Pełny tekst źródłaSiebke, Christian, Maximilian Bäumler, Madlen Ringhand, Marcus Mai, Felix Elrod i Günther Prokop. Report on design of modules for the stochastic traffic simulation. Technische Universität Dresden, 2021. http://dx.doi.org/10.26128/2021.245.
Pełny tekst źródłaAdsit, Sarah E., Theodora Konstantinou, Konstantina Gkritza i Jon D. Fricker. Public Acceptance of INDOT’s Traffic Engineering Treatments and Services. Purdue University, 2021. http://dx.doi.org/10.5703/1288284317280.
Pełny tekst źródłaRinghand, Madlen, Maximilian Bäumler, Christian Siebke, Marcus Mai i Felix Elrod. Report on validation of the stochastic traffic simulation (Part A). Technische Universität Dresden, 2021. http://dx.doi.org/10.26128/2021.242.
Pełny tekst źródła