Artykuły w czasopismach na temat „TRAFFIC CONGESTION DETECTION”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „TRAFFIC CONGESTION DETECTION”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Wiseman, Yair. "Computerized Traffic Congestion Detection System". International Journal of Transportation and Logistics Management 1, nr 1 (30.12.2017): 1–8. http://dx.doi.org/10.21742/ijtlm.2017.1.1.01.
Pełny tekst źródłaIdura Ramli, Nurshahrily, i Mohd Izani Mohamed Rawi. "An overview of traffic congestion detection and classification techniques in VANET". Indonesian Journal of Electrical Engineering and Computer Science 20, nr 1 (1.10.2020): 437. http://dx.doi.org/10.11591/ijeecs.v20.i1.pp437-444.
Pełny tekst źródłaXiang, Yingxiao, Wenjia Niu, Endong Tong, Yike Li, Bowei Jia, Yalun Wu, Jiqiang Liu, Liang Chang i Gang Li. "Congestion Attack Detection in Intelligent Traffic Signal System: Combining Empirical and Analytical Methods". Security and Communication Networks 2021 (31.10.2021): 1–17. http://dx.doi.org/10.1155/2021/1632825.
Pełny tekst źródłaWang, Chao. "An Effective Congestion Control Algorithm based on Traffic Assignment and Reassignment in Wireless Sensor Network". Recent Advances in Electrical & Electronic Engineering (Formerly Recent Patents on Electrical & Electronic Engineering) 13, nr 8 (3.12.2020): 1166–74. http://dx.doi.org/10.2174/2352096513999200628095848.
Pełny tekst źródłaKayarga, Tanuja, i H. M. Navyashree. "A Novel Framework to Control and Optimize the Traffic Congestion Issue in VANET". International Journal of Engineering & Technology 7, nr 2.31 (24.08.2018): 245. http://dx.doi.org/10.14419/ijet.v7i3.31.18234.
Pełny tekst źródłaEl-Sersy, Heba, i Ayman El-Sayed. "Survey of Traffic Congestion Detection using VANET". Communications on Applied Electronics 1, nr 4 (26.03.2015): 14–20. http://dx.doi.org/10.5120/cae-1520.
Pełny tekst źródłaCherkaoui, Badreddine, Abderrahim Beni-Hssane, Mohamed El Fissaoui i Mohammed Erritali. "Road traffic congestion detection in VANET networks". Procedia Computer Science 151 (2019): 1158–63. http://dx.doi.org/10.1016/j.procs.2019.04.165.
Pełny tekst źródłaKalinic, Maja, i Jukka M. Krisp. "Fuzzy inference approach in traffic congestion detection". Annals of GIS 25, nr 4 (2.10.2019): 329–36. http://dx.doi.org/10.1080/19475683.2019.1675760.
Pełny tekst źródłaBhanja, Urmila, Anita Mohanty i Bhagyashree Das. "Embedded based real time traffic congestion detection". International Journal of Vehicle Information and Communication Systems 3, nr 4 (2018): 267. http://dx.doi.org/10.1504/ijvics.2018.094976.
Pełny tekst źródłaMohanty, Anita, Bhagyashree Das i Urmila Bhanja. "Embedded based real time traffic congestion detection". International Journal of Vehicle Information and Communication Systems 3, nr 4 (2018): 267. http://dx.doi.org/10.1504/ijvics.2018.10016393.
Pełny tekst źródłaEs Swidi, A., S. Ardchir, A. Daif i M. Azouazi. "Road users detection for traffic congestion classification". Mathematical Modeling and Computing 10, nr 2 (2023): 518–23. http://dx.doi.org/10.23939/mmc2023.02.518.
Pełny tekst źródłaYang, Xinghai, Fengjiao Wang, Zhiquan Bai, Feifei Xun, Yulin Zhang i Xiuyang Zhao. "Deep Learning-Based Congestion Detection at Urban Intersections". Sensors 21, nr 6 (15.03.2021): 2052. http://dx.doi.org/10.3390/s21062052.
Pełny tekst źródłaKhan, Zahid, Anis Koubaa i Haleem Farman. "Smart Route: Internet-of-Vehicles (IoV)-Based Congestion Detection and Avoidance (IoV-Based CDA) Using Rerouting Planning". Applied Sciences 10, nr 13 (30.06.2020): 4541. http://dx.doi.org/10.3390/app10134541.
Pełny tekst źródłaZhang, Xue Li. "Path Reconstruction of Intelligent Traffic Based on Positive Feedback System". Applied Mechanics and Materials 513-517 (luty 2014): 3160–64. http://dx.doi.org/10.4028/www.scientific.net/amm.513-517.3160.
Pełny tekst źródłaZaitouny, Ayham, Athanasios D. Fragkou, Thomas Stemler, David M. Walker, Yuchao Sun, Theodoros Karakasidis, Eftihia Nathanail i Michael Small. "Multiple Sensors Data Integration for Traffic Incident Detection Using the Quadrant Scan". Sensors 22, nr 8 (11.04.2022): 2933. http://dx.doi.org/10.3390/s22082933.
Pełny tekst źródłaAnbaroglu, B., B. Heydecker i T. Cheng. "HOW TRAVEL DEMAND AFFECTS DETECTION OF NON-RECURRENT TRAFFIC CONGESTION ON URBAN ROAD NETWORKS". ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B2 (7.06.2016): 159–64. http://dx.doi.org/10.5194/isprs-archives-xli-b2-159-2016.
Pełny tekst źródłaAnbaroglu, B., B. Heydecker i T. Cheng. "HOW TRAVEL DEMAND AFFECTS DETECTION OF NON-RECURRENT TRAFFIC CONGESTION ON URBAN ROAD NETWORKS". ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B2 (7.06.2016): 159–64. http://dx.doi.org/10.5194/isprsarchives-xli-b2-159-2016.
Pełny tekst źródłaGe, Ling Yan, i Bi Feng Zhu. "Analysis and Optimization of Hangzhou East Area Traffic Based on the Congestion Index Detection Platform". Advanced Materials Research 1030-1032 (wrzesień 2014): 2182–86. http://dx.doi.org/10.4028/www.scientific.net/amr.1030-1032.2182.
Pełny tekst źródłaBalasubramanian, Saravana Balaji, Prasanalakshmi Balaji, Asmaa Munshi, Wafa Almukadi, T. N. Prabhu, Venkatachalam K i Mohamed Abouhawwash. "Machine learning based IoT system for secure traffic management and accident detection in smart cities". PeerJ Computer Science 9 (8.03.2023): e1259. http://dx.doi.org/10.7717/peerj-cs.1259.
Pełny tekst źródłaMohanty, Anita, Sudipta Mahapatra i Urmila Bhanja. "Traffic congestion detection in a city using clustering techniques in VANETs". Indonesian Journal of Electrical Engineering and Computer Science 13, nr 3 (1.03.2019): 884. http://dx.doi.org/10.11591/ijeecs.v13.i3.pp884-891.
Pełny tekst źródłaWang, Wan-Xiang, Rui-Jun Guo i Jing Yu. "Research on road traffic congestion index based on comprehensive parameters: Taking Dalian city as an example". Advances in Mechanical Engineering 10, nr 6 (czerwiec 2018): 168781401878148. http://dx.doi.org/10.1177/1687814018781482.
Pełny tekst źródłaWang, Chishe, Yuting Chen, Jie Wang i Jinjin Qian. "An Improved CrowdDet Algorithm for Traffic Congestion Detection in Expressway Scenarios". Applied Sciences 13, nr 12 (15.06.2023): 7174. http://dx.doi.org/10.3390/app13127174.
Pełny tekst źródłaPillai, Arjun, Kajal Chourasia i Bhavya Agarwal. "Neural Network Based Traffic Monitoring using UAVs". International Journal of Engineering and Advanced Technology 8, nr 4s2 (1.08.2020): 45–50. http://dx.doi.org/10.35940/ijeat.d1003.0484s219.
Pełny tekst źródłaXu, Ling, Qun Ba i Shan Hu. "Reserch on Traffic Congestion Detection Using Realtime Video". Applied Mechanics and Materials 241-244 (grudzień 2012): 2100–2106. http://dx.doi.org/10.4028/www.scientific.net/amm.241-244.2100.
Pełny tekst źródłaSheikh, Muhammad Sameer, Jun Liang i Wensong Wang. "An Improved Automatic Traffic Incident Detection Technique Using a Vehicle to Infrastructure Communication". Journal of Advanced Transportation 2020 (13.01.2020): 1–14. http://dx.doi.org/10.1155/2020/9139074.
Pełny tekst źródłaPeng, Ming Long, Xin Rong Liang, Chao Jun Dong i Yan Yan Liu. "Freeway Traffic Congestion Identification Based on Fuzzy Logic Inference". Applied Mechanics and Materials 397-400 (wrzesień 2013): 2227–30. http://dx.doi.org/10.4028/www.scientific.net/amm.397-400.2227.
Pełny tekst źródłaV, Mahalakshmi, i Dr Manjunath S. "Automatic Detection of Pedestrian Crossing Platform using Congestion Monitoring". International Journal for Research in Applied Science and Engineering Technology 11, nr 8 (31.08.2023): 275–79. http://dx.doi.org/10.22214/ijraset.2023.55178.
Pełny tekst źródłaKoukounaris, Athanasios I., Konstantina P. Marousi i P. E. Yorgos J. Stephanedes. "Congestion detection and diversion in coastal urban traffic". Transportation Research Procedia 41 (2019): 255–59. http://dx.doi.org/10.1016/j.trpro.2019.09.045.
Pełny tekst źródłaYang, Yuan Feng, Xue Feng Xian, Li Li Liao i Min Ya Zhao. "A Feature Extraction Approach of Traffic Congestion from Video". Advanced Materials Research 490-495 (marzec 2012): 1058–62. http://dx.doi.org/10.4028/www.scientific.net/amr.490-495.1058.
Pełny tekst źródłaBretherton, David, Keith Wood i Neil Raha. "Traffic Monitoring and Congestion Management in the SCOOT Urban Traffic Control System". Transportation Research Record: Journal of the Transportation Research Board 1634, nr 1 (styczeń 1998): 118–22. http://dx.doi.org/10.3141/1634-15.
Pełny tekst źródłaDongare, Tejas, Dhiraj Huljute, Pranit Jadhav, Anuj Lad i Prof Sheetal Marawar. "A Review on Traffic Management and Road Analysis of Porwal Road". International Journal for Research in Applied Science and Engineering Technology 11, nr 1 (31.01.2023): 881–84. http://dx.doi.org/10.22214/ijraset.2023.48508.
Pełny tekst źródłaNurhadryani, Yani, Wulandari Wulandari i Muhammad Naufal Farras Mastika. "Vehicle Detection Monitoring System using Internet of Things". Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) 6, nr 5 (31.10.2022): 749–60. http://dx.doi.org/10.29207/resti.v6i5.4082.
Pełny tekst źródłaShariat Mohaymany, Afshin, i Matin Shahri. "Evaluating the impact of new congestion charging scheme using smartphone-based data: a spatial change detection study". Canadian Journal of Civil Engineering 47, nr 9 (wrzesień 2020): 1105–15. http://dx.doi.org/10.1139/cjce-2019-0106.
Pełny tekst źródłaGao, Zhi Min, Fa Sheng Liu i Meng Chen. "Urban Transportation Crowded Recognition Technology and Application". Applied Mechanics and Materials 97-98 (wrzesień 2011): 907–10. http://dx.doi.org/10.4028/www.scientific.net/amm.97-98.907.
Pełny tekst źródłaAgrawal, K., M. K. Nigam, S. Bhattacharya i G. Sumathi. "Ambulance detection using image processing and neural networks". Journal of Physics: Conference Series 2115, nr 1 (1.11.2021): 012036. http://dx.doi.org/10.1088/1742-6596/2115/1/012036.
Pełny tekst źródłaAliari, Sanaz, i Kaveh F. Sadabadi. "Automatic Detection of Major Freeway Congestion Events using Wireless Traffic Sensor Data: Machine Learning Approach". Transportation Research Record: Journal of the Transportation Research Board 2673, nr 7 (25.05.2019): 436–42. http://dx.doi.org/10.1177/0361198119843859.
Pełny tekst źródłaShang, Qiang, Yang Yu i Tian Xie. "A Hybrid Method for Traffic State Classification Using K-Medoids Clustering and Self-Tuning Spectral Clustering". Sustainability 14, nr 17 (5.09.2022): 11068. http://dx.doi.org/10.3390/su141711068.
Pełny tekst źródłaStojanović, Natalija, i Dragan Stojanović. "BIG MOBILITY DATA ANALYTICS FOR TRAFFIC MONITORING AND CONTROL". Facta Universitatis, Series: Automatic Control and Robotics 19, nr 2 (8.12.2020): 087. http://dx.doi.org/10.22190/fuacr2002087s.
Pełny tekst źródłaLe, Thi Thuy Duong, Dang Hai Hoang i Thieu Nga Pham. "Avoiding Congestion for Coap Burst Traffic". EAI Endorsed Transactions on Internet of Things 9, nr 1 (29.03.2023): e2. http://dx.doi.org/10.4108/eetiot.v9i1.2655.
Pełny tekst źródłaJiang, Tian, Jing An, Hao Zhi Zhang i Zhen Guo Qian. "Traffic Information Collection System for Congestion Identification and Relief". Applied Mechanics and Materials 178-181 (maj 2012): 2680–85. http://dx.doi.org/10.4028/www.scientific.net/amm.178-181.2680.
Pełny tekst źródłaChughtai, Omer, Nasreen Badruddin, Maaz Rehan i Abid Khan. "Congestion Detection and Alleviation in Multihop Wireless Sensor Networks". Wireless Communications and Mobile Computing 2017 (2017): 1–13. http://dx.doi.org/10.1155/2017/9243019.
Pełny tekst źródłaTrinh, Truc, i Khang Nguyen. "A Vietnamese benchmark for vehicle detection and real-time empirical evaluation". Can Tho University Journal of Science 14, nr 3 (29.11.2022): 45–52. http://dx.doi.org/10.22144/ctu.jen.2022.042.
Pełny tekst źródłaAnjaneyulu, Mohandu, i Mohan Kubendiran. "Short-Term Traffic Congestion Prediction Using Hybrid Deep Learning Technique". Sustainability 15, nr 1 (21.12.2022): 74. http://dx.doi.org/10.3390/su15010074.
Pełny tekst źródłaKeerthana, Jeniffer. "Traffic Density Detection and Signal Adjustment Using IR Sensor". International Journal for Research in Applied Science and Engineering Technology 11, nr 6 (30.06.2023): 3117–21. http://dx.doi.org/10.22214/ijraset.2023.54018.
Pełny tekst źródłaCHEN, JING, EVAN TAN i ZHIDONG LI. "A MACHINE LEARNING FRAMEWORK FOR REAL-TIME TRAFFIC DENSITY DETECTION". International Journal of Pattern Recognition and Artificial Intelligence 23, nr 07 (listopad 2009): 1265–84. http://dx.doi.org/10.1142/s0218001409007673.
Pełny tekst źródłaHall, Randolph W., i Nilesh Vyas. "Buses as a Traffic Probe: Demonstration Project". Transportation Research Record: Journal of the Transportation Research Board 1731, nr 1 (styczeń 2000): 96–103. http://dx.doi.org/10.3141/1731-12.
Pełny tekst źródłaShrivastava, Disha, i Arun Agrawal. "Traffic Congestion Detection in Vehicular Adhoc Networks using GPS". IOSR Journal of Computer Engineering 16, nr 2 (2014): 63–69. http://dx.doi.org/10.9790/0661-16216369.
Pełny tekst źródłaWang, Qi, Jia Wan i Yuan Yuan. "Locality constraint distance metric learning for traffic congestion detection". Pattern Recognition 75 (marzec 2018): 272–81. http://dx.doi.org/10.1016/j.patcog.2017.03.030.
Pełny tekst źródłaYong-chuan, Zhang, Zuo Xiao-qing, Zhang li-ting i Chen Zhen-ting. "Traffic Congestion Detection Based On GPS Floating-Car Data". Procedia Engineering 15 (2011): 5541–46. http://dx.doi.org/10.1016/j.proeng.2011.08.1028.
Pełny tekst źródłaLi, Shen, Jian Zhang, Gang Zhong i Bin Ran. "A Simulation Approach to Detect Arterial Traffic Congestion Using Cellular Data". Journal of Advanced Transportation 2022 (21.02.2022): 1–13. http://dx.doi.org/10.1155/2022/8811139.
Pełny tekst źródła