Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Total body radiation.

Artykuły w czasopismach na temat „Total body radiation”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Total body radiation”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Yasumura, S., I. E. Stamatelatos, C. N. Boozer, R. Moore i R. Ma. "In vivo body composition studies in rats: Assessment of total body protein". Applied Radiation and Isotopes 49, nr 5-6 (maj 1998): 731–32. http://dx.doi.org/10.1016/s0969-8043(97)00209-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

De Lorenzo, A., N. Candeloro, I. Bertini, T. Talluri i L. Pierangeli. "Total body capacity correlated with basal metabolic rate". Applied Radiation and Isotopes 49, nr 5-6 (maj 1998): 493–94. http://dx.doi.org/10.1016/s0969-8043(97)00227-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Keane, J. T., D. P. Fontenla i C. S. Chui. "Applications of IMAT to total body radiation (TBI)". International Journal of Radiation Oncology*Biology*Physics 48, nr 3 (styczeń 2000): 239. http://dx.doi.org/10.1016/s0360-3016(00)80274-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Quinn, T. J., i J. E. Martin. "A Black-Body Cavity for Total Radiation Thermometry". Metrologia 23, nr 2 (1.01.1986): 111–14. http://dx.doi.org/10.1088/0026-1394/23/2/004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Baranov, AE, GD Selidovkin, A. Butturini i RP Gale. "Hematopoietic recovery after 10-Gy acute total body radiation". Blood 83, nr 2 (15.01.1994): 596–99. http://dx.doi.org/10.1182/blood.v83.2.596.596.

Pełny tekst źródła
Streszczenie:
Abstract Considerable data suggest that very high doses of acute total body radiation destroy most hematopoietic stem cells and that recovery is possible only after a bone marrow transplant. We review data from a radiation accident victim exposed to about 10-Gy or more acute total body radiation. Total dose and uniformity of distribution were confirmed by physical measurements (paramagnetic resonance), computer simulation, and biologic dosimetry (granulocyte kinetics and cytogenetic abnormalities). Treatment consisted of supportive measures, transfusions, and hematopoietic growth factors (granulocyte-macrophage colony-stimulating factor and interleukin-3). Hematopoietic recovery occurred slowly. Granulocytes were detectable throughout the postexposure period, exceeding 0.5 x 10(9)/L by day 37. There was slower and incomplete recovery of red blood cells and platelets. Increases in blood cell production were paralleled by morphologic changes in bone marrow biopsies. Gastrointestinal toxicity was moderate. Death from a probable radiation pneumonitis infection occurred on day 130. These data indicate the possibility of hematopoietic recovery after approximately 10 Gy or more acute total body radiation without a transplant. They also suggest that lung rather than gastrointestinal toxicity may be dose-limiting under these circumstances.
Style APA, Harvard, Vancouver, ISO itp.
6

Baranov, AE, GD Selidovkin, A. Butturini i RP Gale. "Hematopoietic recovery after 10-Gy acute total body radiation". Blood 83, nr 2 (15.01.1994): 596–99. http://dx.doi.org/10.1182/blood.v83.2.596.bloodjournal832596.

Pełny tekst źródła
Streszczenie:
Considerable data suggest that very high doses of acute total body radiation destroy most hematopoietic stem cells and that recovery is possible only after a bone marrow transplant. We review data from a radiation accident victim exposed to about 10-Gy or more acute total body radiation. Total dose and uniformity of distribution were confirmed by physical measurements (paramagnetic resonance), computer simulation, and biologic dosimetry (granulocyte kinetics and cytogenetic abnormalities). Treatment consisted of supportive measures, transfusions, and hematopoietic growth factors (granulocyte-macrophage colony-stimulating factor and interleukin-3). Hematopoietic recovery occurred slowly. Granulocytes were detectable throughout the postexposure period, exceeding 0.5 x 10(9)/L by day 37. There was slower and incomplete recovery of red blood cells and platelets. Increases in blood cell production were paralleled by morphologic changes in bone marrow biopsies. Gastrointestinal toxicity was moderate. Death from a probable radiation pneumonitis infection occurred on day 130. These data indicate the possibility of hematopoietic recovery after approximately 10 Gy or more acute total body radiation without a transplant. They also suggest that lung rather than gastrointestinal toxicity may be dose-limiting under these circumstances.
Style APA, Harvard, Vancouver, ISO itp.
7

Badawi, Ramsey D., Joel S. Karp, Lorenzo nardo i Austin R. Pantel. "Total Body PET Imaging". PET Clinics 16, nr 1 (styczeń 2021): i. http://dx.doi.org/10.1016/s1556-8598(20)30086-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Chondronikola, Maria, i Souvik Sarkar. "Total-body PET Imaging". PET Clinics 16, nr 1 (styczeń 2021): 75–87. http://dx.doi.org/10.1016/j.cpet.2020.09.001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Ning, Bingxu, Zhiyuan Hu, Zhengxuan Zhang, Zhangli Liu, Ming Chen, Dawei Bi i Shichang Zou. "The impact of total ionizing radiation on body effect". Microelectronics Journal 42, nr 12 (grudzień 2011): 1396–99. http://dx.doi.org/10.1016/j.mejo.2011.09.004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Stewart, F. A. "Radiation Nephropathy after Abdominal Irradiation or Total-Body Irradiation". Radiation Research 143, nr 3 (wrzesień 1995): 235. http://dx.doi.org/10.2307/3579208.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Janiszewska, M., K. Polaczek-Grelik, M. Raczkowski, B. Szafron, A. Konefał i W. Zipper. "Secondary radiation dose during high-energy total body irradiation". Strahlentherapie und Onkologie 190, nr 5 (6.03.2014): 459–66. http://dx.doi.org/10.1007/s00066-014-0635-z.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Oliveira, F. F., L. L. Amaral, A. M. Costa i T. G. Netto. "In vivo dosimetry with silicon diodes in total body irradiation". Radiation Physics and Chemistry 95 (luty 2014): 230–32. http://dx.doi.org/10.1016/j.radphyschem.2013.02.024.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Belkacémi, Yazid, Mahmut Ozsahin, Françoise Pène, Bernard Rio, Jean-Philippe Laporte, Véronique Leblond, Emmanuel Touboul, Michel Schlienger, Norbert-Claude Gorin i Alain Laugier. "Cataractogenesis after total body irradiation". International Journal of Radiation Oncology*Biology*Physics 35, nr 1 (kwiecień 1996): 53–60. http://dx.doi.org/10.1016/s0360-3016(96)85011-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Rundo, J., i Mogens Faber. "Total-body γ-radiation from patients with internally deposited thorium". Recueil des Travaux Chimiques des Pays-Bas 74, nr 4 (2.09.2010): 416–22. http://dx.doi.org/10.1002/recl.19550740406.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Fu, Hanjiang, Yong Xue, Fei Su, Kexin Ding, Yuan Wang, Haiyue Yu, Jie Zhu, Qing Li, Changhui Ge i Xiaofei Zheng. "Plasma Proteins as Biomarkers of Mortality After Total Body Irradiation in Mice". Dose-Response 18, nr 2 (1.04.2020): 155932582092014. http://dx.doi.org/10.1177/1559325820920141.

Pełny tekst źródła
Streszczenie:
During large-scale acute radiation exposure, rapidly distinguishing exposed individuals from nonexposed individuals is necessary. Identifying those exposed to high and potentially lethal radiation doses, and in need of immediate treatment, is especially important. To address this and find plasma biomarkers to assess ionizing radiation-induced mortality in the early stages, mice were administered a whole-body lethal dose of γ radiation, and radiation-induced damage was evaluated. Multiple blood biomarkers were screened using an antibody array, followed by validation using enzyme-linked immunoassay. The results revealed that irradiation (IR)-induced mortality in mice and caused body weight and blood platelet losses in deceased mice compared to surviving mice. The levels of certain proteins differed after IR between these 2 groups. Specific proteins in preirradiated mice were also found to potentiate radiosensitivity. Plasma levels of interleukin (IL)-22, urokinase, resistin, and IL-6 were associated with radiation-induced mortality in irradiated mice and may be useful as potential mortality predictors. Our results suggest that estimating the levels of certain plasma proteins is a promising alternative to conventional cytogenetic biodosimetry to accurately identify individuals exposed to high radiation doses and those at risk of death due to exposure. This strategy would facilitate the rapid triage of individuals requiring immediate and intensive medical treatment.
Style APA, Harvard, Vancouver, ISO itp.
16

Obcemea, Ceferino H., Roger K. Rice, Bernard J. Mijnheer, Robert L. Siddon, Nancy J. Tarbell, Peter Mauch i Lee M. Chin. "Three-dimensional dose distribution of total body irradiation by a dual source total body irradiator". International Journal of Radiation Oncology*Biology*Physics 24, nr 4 (styczeń 1992): 789–93. http://dx.doi.org/10.1016/0360-3016(92)90730-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Gale, R. P., i F. O. Hoffman. "Communicating cancer risk from radiation exposures: nuclear accidents, total body radiation and diagnostic procedures". Bone Marrow Transplantation 48, nr 1 (29.10.2012): 2–3. http://dx.doi.org/10.1038/bmt.2012.90.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Gordon, Christopher J. "Normalizing the thermal effects of radiofrequency radiation: Body mass versus total body surface area". Bioelectromagnetics 8, nr 2 (1987): 111–18. http://dx.doi.org/10.1002/bem.2250080202.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Badawi, Ramsey D., Joel S. Karp, Lorenzo Nardo i Austin R. Pantel. "Total Body PET: Exploring New Horizons". PET Clinics 16, nr 1 (styczeń 2021): xvii—xviii. http://dx.doi.org/10.1016/j.cpet.2020.09.005.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Sproull, Mary, Tamalee Kramp, Anita Tandle, Uma Shankavaram i Kevin Camphausen. "Multivariate Analysis of Radiation Responsive Proteins to Predict Radiation Exposure in Total-Body Irradiation and Partial-Body Irradiation Models". Radiation Research 187, nr 2 (1.01.2017): 251. http://dx.doi.org/10.1667/rr14558.1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Brown, D. W., A. Hussain, J. E. Villarreal-Barajas i P. Dunscombe. "Aperture Modulated, Translational Total Body Irradiation". International Journal of Radiation Oncology*Biology*Physics 78, nr 3 (listopad 2010): S813. http://dx.doi.org/10.1016/j.ijrobp.2010.07.1883.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Borg, Martin, Timothy Hughes, Noemi Horvath, Michael Rice i Anthony C. Thomas. "Renal toxicity after total body irradiation". International Journal of Radiation Oncology*Biology*Physics 54, nr 4 (listopad 2002): 1165–73. http://dx.doi.org/10.1016/s0360-3016(02)03039-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Vriesendorp, H. M., M. G. Herman i R. Saral. "Future analyses of total body irradiation". International Journal of Radiation Oncology*Biology*Physics 20, nr 3 (marzec 1991): 635–37. http://dx.doi.org/10.1016/0360-3016(91)90082-f.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Maghsoudi, K., O. Morin, J. Pouliot, J. Chang, J. Johnson, A. Polishchuk i S. Fogh. "Dosimetric Considerations of Total Body Irradiation". International Journal of Radiation Oncology*Biology*Physics 87, nr 2 (październik 2013): S746. http://dx.doi.org/10.1016/j.ijrobp.2013.06.1977.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Marie, S. M., V. Passerat, C. Pästeuris i C. Carrie. "Late Toxicities after Total Body Irradiation". International Journal of Radiation Oncology*Biology*Physics 75, nr 3 (listopad 2009): S515. http://dx.doi.org/10.1016/j.ijrobp.2009.07.1175.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Rodgers, Kathleen E., Theresa Espinoza, Norma Roda, Christopher J. Meeks, Colin Hill, Stan G. Louie i Gere S. Dizerega. "Accelerated hematopoietic recovery with angiotensin-(1–7) after total body radiation". International Journal of Radiation Biology 88, nr 6 (30.04.2012): 466–76. http://dx.doi.org/10.3109/09553002.2012.676228.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Halper, Shelley, i Maria Medinica. "Porokeratosis in a patient treated with total body electron beam radiation". Journal of the American Academy of Dermatology 23, nr 4 (październik 1990): 754–55. http://dx.doi.org/10.1016/s0190-9622(08)81078-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Takenaka, Ryosuke, Hideomi Yamashita, Takashi Toya, Akihiro Haga, Shino Shibata, Mineo Kurokawa, Kuni Ootomo i Keiichi Nakagawa. "Unique radiation dermatitis related to total body irradiation by helical tomotherapy". Journal of Dermatology 43, nr 11 (30.04.2016): 1376–77. http://dx.doi.org/10.1111/1346-8138.13396.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Rohner, Deborah J., Suzanne Bennett, Chandrasiri Samaratunga, Elizabeth S. Jewell, Jeffrey P. Smith, Mary Gaskill-Shipley i Steven J. Lisco. "Cumulative Total Effective Whole-Body Radiation Dose in Critically Ill Patients". Chest 144, nr 5 (listopad 2013): 1481–86. http://dx.doi.org/10.1378/chest.12-2222.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Janowski, Einsley, i Anatoly Dritschilo. "Radiation Sensitization of Leukemic Cells for Low Dose Total Body Irradiation". EBioMedicine 2, nr 4 (kwiecień 2015): 278–79. http://dx.doi.org/10.1016/j.ebiom.2015.03.011.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Kirova, YM, H. Rafi, M.-C. Voisin, C. Rieux, M. Kuentz, SLe Mouel, E. Levy i C. Cordonnier. "Radiation-induced bone sarcoma following total body irradiation: role of additional radiation on localized areas". Bone Marrow Transplantation 25, nr 9 (26.04.2000): 1011–13. http://dx.doi.org/10.1038/sj.bmt.1702381.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Henrich, Timothy J., Terry Jones, Denis Beckford-Vera, Patricia M. Price i Henry F. VanBrocklin. "Total-Body PET Imaging in Infectious Diseases". PET Clinics 16, nr 1 (styczeń 2021): 89–97. http://dx.doi.org/10.1016/j.cpet.2020.09.011.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Chaudhari, Abhijit J., William Y. Raynor, Ali Gholamrezanezhad, Thomas J. Werner, Chamith S. Rajapakse i Abass Alavi. "Total-Body PET Imaging of Musculoskeletal Disorders". PET Clinics 16, nr 1 (styczeń 2021): 99–117. http://dx.doi.org/10.1016/j.cpet.2020.09.012.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Mason, Kathy A., H. Rodney Withers, William H. McBride, Cally A. Davis i James B. Smathers. "Comparison of the Gastrointestinal Syndrome after Total-Body or Total-Abdominal Irradiation". Radiation Research 117, nr 3 (marzec 1989): 480. http://dx.doi.org/10.2307/3577353.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Zhao, Yu, Junling Zhang, Xiaodan Han i Saijun Fan. "Total body irradiation induced mouse small intestine senescence as a late effect". Journal of Radiation Research 60, nr 4 (5.06.2019): 442–50. http://dx.doi.org/10.1093/jrr/rrz026.

Pełny tekst źródła
Streszczenie:
Abstract Radiation can induce senescence in many organs and tissues; however, it is still unclear how radiation stimulates senescence in mouse small intestine. In this study, we use the bone marrow transplantation mouse model to explore the late effects of total body irradiation on small intestine. Our results showed that almost all of the body hairs of the irradiated mice were white (which is an indication of aging) 10 months after the exposure to radiation. Furthermore, compared with the age-matched control mice, there were more SA-β-galactosidase (SA-β-gal)–positive cells and an upregulation of p16 and p21 in 8 Gy–irradiated mice intestinal crypts, indicating that radiation induced senescence in the small intestine. Intestinal bacterial flora profile analysis showed that the diversity of the intestinal bacterial flora decreased in irradiated mice; in addition it showed that the principal components of the irradiated and control mice differed: there was increased abundance of Bacteroidia and a decreased abundance of Clostridia in irradiated mice. To explore the underlying mechanism, an RNA-sequence was executed; the results suggested that pancreatic secretion, and the digestion and absorption of proteins, carbohydrates, fats and vitamins were damaged in irradiated mice, which may be responsible for the body weight loss observed in irradiated mice. In summary, our study suggested that total body irradiation may induce senescence in the small intestine and damage the health status of the irradiated mice.
Style APA, Harvard, Vancouver, ISO itp.
36

Barker, C. A., A. Rimner i J. Yahalom. "A Century of Total Body Irradiation (TBI)". International Journal of Radiation Oncology*Biology*Physics 75, nr 3 (listopad 2009): S434—S435. http://dx.doi.org/10.1016/j.ijrobp.2009.07.995.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Lawton, Colleen A. "Total body irradiation for bone marrow transplantation". International Journal of Radiation Oncology*Biology*Physics 42, nr 1 (styczeń 1998): 104. http://dx.doi.org/10.1016/s0360-3016(98)80035-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Donnall Thomas, E. "Total body irradiation regimens for marrow grafting". International Journal of Radiation Oncology*Biology*Physics 19, nr 5 (listopad 1990): 1285–88. http://dx.doi.org/10.1016/0360-3016(90)90245-f.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Shank, Brenda M. "Total body irradiation for bone marrow transplantation". International Journal of Radiation Oncology*Biology*Physics 27 (1993): 106. http://dx.doi.org/10.1016/0360-3016(93)90588-m.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Pierce, Greg, Alex Balogh, Rebecca Frederick, Deborah Gordon, Adam Yarschenko i Alana Hudson. "Extended SSD VMAT treatment for total body irradiation". Journal of Applied Clinical Medical Physics 20, nr 1 (27.12.2018): 200–211. http://dx.doi.org/10.1002/acm2.12519.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Sarfaraz, Mehrdad, Cedric Yu, D. J. Chen i Leon Der. "A translational couch technique for total body irradiation". Journal of Applied Clinical Medical Physics 2, nr 4 (wrzesień 2001): 201–9. http://dx.doi.org/10.1120/jacmp.v2i4.2597.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Kazadzis, S., A. Bais, M. Blumthaler, A. Webb, N. Kouremeti, R. Kift, B. Schallhart i A. Kazantzidis. "Effects of total solar eclipse of 29 March 2006 on surface radiation". Atmospheric Chemistry and Physics 7, nr 22 (22.11.2007): 5775–83. http://dx.doi.org/10.5194/acp-7-5775-2007.

Pełny tekst źródła
Streszczenie:
Abstract. Solar irradiance spectral measurements were performed during a total solar eclipse. The spectral effect of the limb darkening to the global, direct irradiance and actinic flux measurements was investigated. This effect leads to wavelength dependent changes in the measured solar spectra showing a much more pronounced decrease in the radiation at the lower wavelengths. Radiative transfer model results were used for the computation of a correction for the total ozone measurements due to the limb darkening. This correction was found too small to explain the large decrease in total ozone column derived from the standard Brewer measurements, which is an artifact in the measured irradiance due to the increasing contribution of diffuse radiation against the decreasing direct irradiance caused by the eclipse. Calculations of the Extraterrestrial spectrum and the effective sun's temperatures, as measured from ground based direct irradiance measurements, showed an artificial change in the calculations of both quantities due to the fact that radiation coming from the visible part of the sun during the eclipse phases differs from the black body radiation described by the Planck's law.
Style APA, Harvard, Vancouver, ISO itp.
43

Kazadzis, S., A. Bais, M. Blumthaler, A. Webb, N. Kouremeti, R. Kift, B. Schallhart i A. Kazantzidis. "Effects of total solar eclipse of 29 March 2006 on surface radiation". Atmospheric Chemistry and Physics Discussions 7, nr 3 (29.06.2007): 9235–58. http://dx.doi.org/10.5194/acpd-7-9235-2007.

Pełny tekst źródła
Streszczenie:
Abstract. Solar irradiance spectral measurements were performed during a total solar eclipse. The spectral effect of the limb darkening to the global, direct irradiance and actinic flux measurements was investigated. This effect leads to wavelength dependent changes in the measured solar spectra showing a much more pronounced decrease in the radiation at the lower wavelengths. Radiative transfer model results were used for the computation of a correction for the total ozone measurements due to the limb darkening. This correction was found too small to explain the large decrease in total ozone column derived from the standard Brewer measurements, which is an artifact in the measured irradiance due to the increasing contribution of diffuse radiation against the decreasing direct irradiance caused by the eclipse. Calculations of the Extraterrestrial spectrum and the effective sun's temperatures, as measured from ground based direct irradiance measurements, showed an artificial change in the calculations of both quantities due to the fact that radiation coming from the visible part of the sun during the eclipse phases differs from the back body radiation described by the Planck's law.
Style APA, Harvard, Vancouver, ISO itp.
44

Sabloff, Mitchell, Steven Tisseverasinghe, Mustafa Ege Babadagli i Rajiv Samant. "Total Body Irradiation for Hematopoietic Stem Cell Transplantation: What Can We Agree on?" Current Oncology 28, nr 1 (14.02.2021): 903–17. http://dx.doi.org/10.3390/curroncol28010089.

Pełny tekst źródła
Streszczenie:
Total body irradiation (TBI), used as part of the conditioning regimen prior to allogeneic and autologous hematopoietic cell transplantation, is the delivery of a relatively homogeneous dose of radiation to the entire body. TBI has a dual role, being cytotoxic and immunosuppressive. This allows it to eliminate disease and create “space” in the marrow while also impairing the immune system from rejecting the foreign donor cells being transplanted. Advantages that TBI may have over chemotherapy alone are that it may achieve greater tumour cytotoxicity and better tissue penetration than chemotherapy as its delivery is independent of vascular supply and physiologic barriers such as renal and hepatic function. Therefore, the so-called “sanctuary” sites such as the central nervous system (CNS), testes, and orbits or other sites with limited blood supply are not off-limits to radiation. Nevertheless, TBI is hampered by challenging logistics of administration, coordination between hematology and radiation oncology departments, increased rates of acute treatment-related morbidity and mortality along with late toxicity to other tissues. Newer technologies and a better understanding of the biology and physics of TBI has allowed the field to develop novel delivery systems which may help to deliver radiation more safely while maintaining its efficacy. However, continued research and collaboration are needed to determine the best approaches for the use of TBI in the future.
Style APA, Harvard, Vancouver, ISO itp.
45

Ossetrova, Natalia I., Patrick H. Ney, Donald P. Condliffe, Katya Krasnopolsky i Kevin P. Hieber. "Acute Radiation Syndrome Severity Score System in Mouse Total-Body Irradiation Model". Health Physics 111, nr 2 (sierpień 2016): 134–44. http://dx.doi.org/10.1097/hp.0000000000000499.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Azimzadeh, Omid, Harry Scherthan, Hakan Sarioglu, Zarko Barjaktarovic, Marcus Conrad, Andreas Vogt, Julia Calzada-Wack i in. "Rapid proteomic remodeling of cardiac tissue caused by total body ionizing radiation". PROTEOMICS 11, nr 16 (27.07.2011): 3299–311. http://dx.doi.org/10.1002/pmic.201100178.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Cui, Wanchang, Jinfang Ma, Yulei Wang i Shyam Biswal. "Plasma miRNA as Biomarkers for Assessment of Total-Body Radiation Exposure Dosimetry". PLoS ONE 6, nr 8 (17.08.2011): e22988. http://dx.doi.org/10.1371/journal.pone.0022988.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Wong, Jeffrey Y. C., Andrea Riccardo Filippi, Bouthaina Shbib Dabaja, Joachim Yahalom i Lena Specht. "Total Body Irradiation: Guidelines from the International Lymphoma Radiation Oncology Group (ILROG)". International Journal of Radiation Oncology*Biology*Physics 101, nr 3 (lipiec 2018): 521–29. http://dx.doi.org/10.1016/j.ijrobp.2018.04.071.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Cunha, J. S., D. N. Souza i A. B. Carvalho Júnior. "Dose calculation with MCNPX code for Total Body Irradiation technique in sitting and lying postures". Radiation Physics and Chemistry 149 (sierpień 2018): 1–6. http://dx.doi.org/10.1016/j.radphyschem.2018.03.004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Rodriguez, Jose A., Senthil Selvaraj i Paco E. Bravo. "Potential Cardiovascular Applications of Total-body PET Imaging". PET Clinics 16, nr 1 (styczeń 2021): 129–36. http://dx.doi.org/10.1016/j.cpet.2020.09.004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii